精英家教网 > 高中数学 > 题目详情

设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:

①若α∥β,α⊥γ,则β⊥γ;

②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ;

③若直线l与平面α内的无数条直线垂直,则直线l与平面α垂直;

④若α内存在不共线的三点到β的距离相等,则平面α平行于平面β;

上面命题中,真命题的序号为________(写出所有真命题的序号).

 

①②

【解析】由题可知③中无数条直线不能认定为任意一条直线,所以③错,④中的不共线的三点有可能是在平面β的两侧,所以两个平面可能相交也可能平行,故填①②.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题

设A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程是(  )

A.(x-1)2+y2=4 B.(x-1)2+y2=2

C.y2=2x D.y2=-2x

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:填空题

设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当∠APC为钝角时,λ的取值范围是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则(  )

A.EF至多与A1D,AC之一垂直

B.EF⊥A1D,EF⊥AC

C.EF与BD1相交

D.EF与BD1异面

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:填空题

如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:

①若m?β,α⊥β,则m⊥α;②若α∥β,m?α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.

其中正确命题的序号是(  )

A.①③ B.①② C.③④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:填空题

如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:解答题

已知x∈R,a=x2+,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小于1.

 

查看答案和解析>>

同步练习册答案