精英家教网 > 高中数学 > 题目详情
设P为椭圆上的一点,为该椭圆的两个焦点,若,则的面积等于(   )
A.3B.C.2D.2
B.

试题分析:椭圆的焦点三角形的面积公式可知.
点评:椭圆的焦点三角形的面积公式,双曲线的焦点三角形的面积公式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分) 如图,是离心率为的椭圆,
()的左、右焦点,直线将线段分成两段,其长度之比为1 : 3.设上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的
横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线=1的离心率为e,抛物线x=2py2的焦点为(e,0),则p的值为(  )
A.2 B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若过椭圆内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,焦点在y轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则椭圆的方程是 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

 是椭圆的两个焦点,为椭圆上一点,且,则的面积为
A.7B.C.D.

查看答案和解析>>

同步练习册答案