【题目】若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为“递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________.
【答案】
;
【解析】
利用列举法列举出所有符合“递增三位数”的三位数,并找出符合等差数列的个数,即可由古典概型概率的计算公式求解.
根据定义“递增三位数”, 个位数字大于十位数字,十位数字大于百位数字.可知个位数最小为3,最大为9
当个位数为3时,三位数为
,共1个.三个数字依次成等差数列的有1个.
当个位数为4时,三位数为
,共3个.三个数字依次成等差数列的为
,有1个
当个位数为5时,三位数为
,共6个.三个数字成等差数列的为
有2个.
当个位数为6时,三位数为
共10个.三个数字成等差数列的为
,有2个.
当个位数为7时,三位数为![]()
共15个,三个数字成等差数列的为
,有3个.
当个位数为8时,三位数为
,![]()
.共21个, 三个数字成等差数列的为
,有3个.
当个位数为9时,三位数为
,
,
,
,
,
,
共
个, 三个数字成等差数列的为
,有4个.
综上可知, “递增三位数”共有
个.三个数字成等差数列的共有
个
则从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为![]()
故答案为: ![]()
科目:高中数学 来源: 题型:
【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下
列联表:
男生 | 女生 | 合计 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
总计 | 50 | 50 | 100 |
(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5名学生中随机选取3名做深度采访,求这3名学生中恰有2名挑同桌的概率;
(2)根据以上
列联表,是否有
以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(参考公式:
,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2018年1月~8月促销费用(万元)和产品销量(万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知
与
具有线性相关关系,请建立
与
的回归方程
(系数精确到0.01);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以
(单位:件)表示日销量,
,则每位员工每日奖励100元;
,则每位员工每日奖励150元,
,则每位员工每日奖励200元.现已知该网站6月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约多少元(当月奖励金额总数精确到百分位).
参考数据:
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
;②若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为2,过点
.
(1)求椭圆
的标准方程;
(2)设椭圆的右焦点为F,定点
,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线
的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
平面
,
,
为
上异于
的点.
![]()
(1)求证:平面
平面
;
(2)当
与平面
所成角为
时,求
的长;
(3)当
时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案①:将每个人的血分别化验,这时需要验960次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验一次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验.这样,该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人中每个人的血化验次数为
,求
的分布列;
(2)设
.试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,且圆
过椭圆
的上,下顶点.
(1)求椭圆
的方程.
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列![]()
是公差不为零等差数列,满足
;数列![]()
的前
项和为
,且满足
.
(1)求数列
、
的通项公式;
(2)在
和
之间插入1个数
,使
成等差数列;在
和
之间插入2个数
,使
成等差数列;……;在
和
之间插入
个数
,使
成等差数列,
(i)求
;
(ii)是否存在正整数
,使
成立?若存在,求出所有的正整数对
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com