精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
3
x3+2kx-1(k<0)

(1)求函数f(x)的单调区间;
(2)当实数k在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
(1)f′(x)=3x2+2k.
f′(x)=0,x=±
-k
.(2分)
当x<-
-k
或x>
-k
时,f'(x)>0
当-
-k
<x<
-k
时,f'(x)<0
∴f(x)的单调增区间是(-∞,-
-k
),(
-k
,+∞)
递减区间为(-
-k
k
)
.(6分)
(2)由(1)知,当x=-
-k
时,f(x)取得极大值f(-
-k
)=
4
3
(
-k
)
3
-1

x=
-k
时,f(x)取得极小值f(
-k
)=-
4
3
(
-k
)
3
-1
(8分)
依题意,要使函数y=f(x)与y=3只有一个公共点,须f(x)极大<3,或f(x)极小>3.(10分)
4
3
(
-k
)
3
<k<0
,解得-
39
<k<0

-
4
3
(
-k
)
3
-1>3
无解.
所以,所求实数k的取值范围是(-
39
,0)
.(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案