精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲线y=f(x)与曲线y=g(x) 在它们的交点P(2,c)处有相同的切线(P为切点),求实数a,b的值;
(2)令h (x)=f(x)+g(x),若函数h(x)的单调减区间为.
①求函数h(x)在区间(-∞,-1]上的最大值M(a);
②若|h(x)|≤3在x∈[-2,0]上恒成立,求实数a的取值范围.

(1)a=,b=5
(2)①M(a)=

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)讨论的单调性;
(2)设,当时,,求的最大值;
(3)已知,估计ln2的近似值(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)讨论的单调性;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)当时,若存在, 使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时,讨论的单调性;
(2)设,当若对任意存在 使求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=ln(1+x)-x-ax2.
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间[-,-]上有单调递增区间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一物体沿直线以速度的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.

查看答案和解析>>

同步练习册答案