3£®Ä³ÉÏÊй«Ë¾¹ÉƱÔÚ30ÌìÄÚÿ¹ÉµÄ½»Ò×¼Û¸ñp£¨Ôª£©Óëʱ¼ät£¨Ì죩×é³ÉÓÐÐòÊý¶Ô£¨t£¬p£©£¬µã£¨t£¬p£©ÂäÔÚÏÂͼÖеÄÁ½ÌõÏß¶ÎÉÏ£®¸Ã¹ÉƱÔÚ30ÌìÄÚ£¨°üÀ¨30Ì죩µÄ½»Ò×Á¿q£¨ÍòÔª£©Óëʱ¼ät£¨Ì죩µÄ²¿·ÖÊý¾ÝÈç±íËùʾ£º
µÚtÌì4101622
q£¨Íò¹É£©2620148
£¨1£©¸ù¾ÝÌṩµÄͼÏó£¬Ð´³ö¸ÃÖֹɯ±Ã¿¹É½»Ò×¼Û¸ñp£¨Ôª£©Óëʱ¼ät£¨Ì죩ËùÂú×ãµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÈôtÓëqÂú×ãÒ»´Îº¯Êý¹ØÏµ£¬¸ù¾Ý±íÖÐÊý¾ÝÈ·¶¨ÈÕ½»Ò×Á¿q£¨Íò¹É£©Óëʱ¼ät£¨Ì죩µÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÔÚ£¨2£©µÄ½áÂÛÏ£¬ÓÃy£¨ÍòÔª£©±íʾ¸Ã¹ÉƱÈÕ½»Ò׶д³öy¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³öÕâ30ÌìÖеڼ¸ÈÕ½»Ò×¶î×î´ó£¬×î´óֵΪ¶àÉÙ£¿

·ÖÎö £¨1£©¿É¿´³ö0£¼t£¼20ʱ£¬pºÍtÂú×ãÒ»´Îº¯Êý¹ØÏµ£¬´Ó¶øÉèp=at+b£¬ÓÉͼÏó¿´³ö¹ýµã£¨0£¬2£©£¬£¨20£¬6£©£¬´øÈë½âÎöʽ±ã¿ÉÇó³öa£¬b£¬¶øÍ¬Àí¿ÉÒÔÇó³ö20¡Üt¡Ü30ʱµÄp£¬tº¯Êý¹ØÏµÊ½£¬´Ó¶øµÃ³ö$p=\left\{\begin{array}{l}{\frac{1}{5}t+2}&{0£¼t£¼20}\\{-\frac{1}{10}t+8}&{20¡Üt¡Ü30}\end{array}\right.$£»
£¨2£©¸ù¾ÝtÓëqÂú×ãÒ»´Îº¯Êý¹ØÏµÊ½£¬´Ó¶ø¿ÉÉèq=kt+m£¬ÓɱíÖÐÊý¾ÝÖª¸Ãº¯ÊýͼÏó¹ýµã£¨4£¬26£©£¬£¨10£¬20£©£¬´Ó¶ø¿ÉÒÔÇó³ök£¬m£¬´Ó¶øµÃ³öq=-t+30£»
£¨3£©¸ù¾ÝÌâÒâ¼´¿ÉµÃ³öy=$\left\{\begin{array}{l}{-\frac{1}{5}£¨t-10£©^{2}+80}&{0£¼t£¼20}\\{\frac{1}{10}£¨t-55£©^{2}-\frac{125}{2}}&{20¡Üt¡Ü30}\end{array}\right.$£¬ÕâÑù¼´¿ÉÇó³öÿ¶ÎÉÏyµÄ×î´óÖµ£¬±È½Ï¼´¿ÉÇó³öÕâ30ÌìÖеڼ¸ÈÕ½»Ò×¶î×î´ó£¬ÒÔ¼°×î´óֵΪ¶àÉÙ£®

½â´ð ½â£º£¨1£©µ±0£¼t£¼20ʱ£¬Éèp=at+b£¬ÓÉͼÏó¿ÉÖª¹ýµã£¨0£¬2£©£¬£¨20£¬6£©£¬´úÈëµÃ£º
$\left\{\begin{array}{l}{2=b}\\{6=20a+b}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=2}\\{a=\frac{1}{5}}\end{array}\right.$£»
¼´$p=\frac{1}{5}t+2$£»
ͬÀí¿ÉµÃµ±20¡Üt¡Ü30ʱ$p=-\frac{1}{10}t+8$£»
×ÛÉϿɵÃ$p=\left\{\begin{array}{l}{\frac{1}{5}t+2}&{0£¼t£¼20}\\{-\frac{1}{10}t+8}&{20¡Üt¡Ü30}\end{array}\right.$£»
£¨2£©ÓÉÌâÒâÉèq=kt+m£¬¹ýµã£¨4£¬26£©£¬£¨10£¬20£©£¬¿ÉµÃ£º
$\left\{\begin{array}{l}{26=4k+m}\\{20=10k+m}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{m=30}\end{array}\right.$£»
¡àq=-t+30£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ$y=pq=\left\{\begin{array}{l}{£¨\frac{1}{5}t+2£©£¨-t+30£©}&{0£¼t£¼20}\\{£¨-\frac{1}{10}t+8£©£¨-t+30£©}&{20¡Üt¡Ü30}\end{array}\right.$=$\left\{\begin{array}{l}{-\frac{1}{5}£¨t-10£©^{2}+80}&{0£¼t£¼20}\\{\frac{1}{10}£¨t-55£©^{2}-\frac{125}{2}}&{20¡Üt¡Ü30}\end{array}\right.$£»
¡àµ±0£¼t£¼20ʱ£¬t=10ʱ£¬ymax=80ÍòÔª£»
µ±20¡Üt¡Ü30ʱ£¬t=20ʱ£¬ymax=60ÍòÔª£»
×ÛÉϿɵõÚ10ÈյĽ»Ò×¶î×î´óΪ80ÍòÔª£®

µãÆÀ ¿¼²é´ý¶¨ÏµÊýÇóº¯Êý½âÎöʽµÄ·½·¨£¬ÒÔ¼°Ò»´Îº¯ÊýµÄÒ»°ãÐÎʽ£¬Í¼ÏóÉϵĵãµÄ×ø±êºÍº¯Êý½âÎöʽµÄ¹ØÏµ£¬ÒÔ¼°Åä·½·¨Çó¶þ´Îº¯ÊýµÄ×îÖµ£¬·Ö¶Îº¯Êý×îÖµµÄÇ󷨣®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÎå±ßÐÎABECDÓÐÒ»¸öÖ±½ÇÌÝÐÎABCDÓëÒ»¸öµÈ±ßÈý½ÇÐÎBCE¹¹³É£¬Èçͼ1Ëùʾ£¬AB¡ÍBC£¬ÇÒAB=2BC=2CD£¬½«ÌÝÐÎABCDÑØ×ÅBCÕÛÆð£¬ÐγÉÈçͼ2ËùʾµÄ¼¸ºÎÌ壬ÇÒAB¡ÍÆ½ÃæBEC£®
£¨1£©ÇóÖ¤£ºÆ½ÃæABE¡ÍÆ½ÃæADE£»
£¨2£©Çó¶þÃæ½ÇA-DE-BµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼËùʾ£¬Õý·½ÐÎABCDËùÔÚÆ½ÃæÓëÔ²OËùÔÚÆ½ÃæÏཻÓÚCD£¬Ïß¶ÎCDΪԲOµÄÏÒ£¬AE´¹Ö±ÓÚÔ²OËùÔÚÆ½Ã棬´¹×ãEÊÇÔ²OÉÏÒìÓÚC£¬DµÄµã£¬AE=3£¬Ô²OµÄÖ±¾¶Îª9£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæABCD¡ÍÆ½ÃæADE£» 
£¨¢ò£©ÇóÈýÀâ×¶D-ABEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èô²»µÈʽx2+ax+1¡Ý0¶ÔÓÚÒ»ÇÐx¡Ê£¨0£¬$\frac{1}{2}$£©ºã³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ý0B£®a¡Ý-2C£®a¡Ý-$\frac{5}{2}$D£®a¡Ý-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-3x+3£©exµÄ¶¨ÒåÓòΪ[-2£¬t]£¬Éèf£¨-2£©=m£¬f£¨t£©=n£®
£¨¢ñ£©ÊÔÈ·¶¨tµÄȡֵ·¶Î§£¬Ê¹µÃº¯Êýf£¨x£©ÔÚ[-2£¬t]ÉÏΪµ¥µ÷º¯Êý£»
£¨¢ò£©ÇóÖ¤£ºm£¼n£»
£¨¢ó£©Èô²»µÈʽ$\frac{f£¨x£©}{{e}^{x}}$+7x-2£¾k£¨xlnx-1£©£¨kΪÕýÕûÊý£©¶ÔÈÎÒâÕýʵÊýºã³ÉÁ¢£¬ÇóµÄ×î´óÖµ£¬²¢Ö¤Ã÷lnx£¼$\frac{14}{9}$£¨½â´ð¹ý³Ì¿É²Î¿¼Ê¹ÓÃÒÔÏÂÊý¾Ýln7¡Ö1.95£¬ln8¡Ö2.08£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªA={x|-x2+3x-2£¾0}£¬B={x|x2-£¨a+1£©x-a¡Ü0}£®
£¨1£©»¯¼ò¼¯ºÏB£»
£¨2£©ÈôA⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýy=f£¨x£©ÔÚx=x0´¦µÄµ¼ÊýΪ11£¬Ôò
$\underset{lim}{¡÷x¡ú0}$$\frac{f£¨{x}_{0}-¡÷x£©-f£¨{x}_{0}£©}{¡÷x}$=-11£»
$\underset{lim}{x¡ú{x}_{0}}$$\frac{f£¨x£©-f£¨{x}_{0}£©}{2£¨{x}_{0}-x£©}$=-$\frac{11}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÔÚ¡÷ABCÖУ¬µãA£¨-1£¬0£©£¬B£¨0£¬$\sqrt{3}$£©£¬C£¨1£¬-2£©£®
£¨¢ñ£©Çó±ßABÉϸßËùÔÚÖ±Ïߵķ½³Ì£»
£¨¢ò£©Çó¡÷ABCµÄÃæ»ýS¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒc•cosA-acosC=$\frac{2}{3}$b£®
£¨1£©Æä$\frac{tanA}{tanC}$µÄÖµ£»
£¨2£©ÈôtanA£¬tanB£¬tanC³ÉµÈ²îÊýÁУ¬Çó$\frac{{a}^{2}-{b}^{2}-{c}^{2}}{bc}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸