精英家教网 > 高中数学 > 题目详情
16.在二项式(9x-$\frac{1}{{3\root{3}{x}}}}$)n的展开式中,偶数项的二项式系数之和为256,则展开式中x的系数为84.

分析 根据二项式展开式中,偶数项与奇数项的二项式系数之和相等,求出n的值;再利用二项展开式的通项公式,即可求出展开式中x的系数.

解答 解:二项式展开式中,偶数项与奇数项的二项式系数之和相等,
所以2n-1=256,解得n=9;
所以二项式(9x-$\frac{1}{{3\root{3}{x}}}}$)9的展开式中,通项公式为
Tr+1=${C}_{9}^{r}$•(9x)9-r•${(-\frac{1}{3\root{3}{x}})}^{r}$=${C}_{9}^{r}$•99-r•${(-\frac{1}{3})}^{r}$•${x}^{9-\frac{4γ}{3}}$;
令9-$\frac{4r}{3}$=1,解得r=6;
所以展开式中x的系数为
${C}_{9}^{6}$•93•${(-\frac{1}{3})}^{6}$=84.
故答案为:84.

点评 本题考查了二项式展开式的二项式系数的应用问题,也考查了二项式展开式的通项公式应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.袋中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设X为取得红球的次数,则X的方差D(X)的值为(  )
A.$\frac{12}{5}$B.$\frac{24}{25}$C.$\frac{8}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的正数数阵中,第一横行是公差为d的等差数列,各列均是公比为q等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,则下列结论中不正确的是(  )
A.d+2q=a1,2B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.每一横行都是等差数列D.ai,j=(2j-1)+21-i(i,j均为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+ax-2xlnx(a∈R).
(1)当a=5时,判断g(x)=f(x)-$\frac{1}{2}$x2在[1,e]上的单调性并加以证明;
(2)当a=4-e时,试探讨函数f(x)在(0,+∞)上是否存在极小值?,若存在,求出极小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
603090
9020110
合计15050200
(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.
附参考公式与数据:K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.0050.001
k02.7063.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面四边形ABCD中,∠B=∠D=90°,AC=2AB=4$\sqrt{3}$,DA=DC,F是AC上一点,且AF=$\frac{1}{3}$AC.将该四边形沿AC折起,使点D在平面ABC的射影E恰在BC上,此时DE=2$\sqrt{2}$.
(Ⅰ)证明:AB⊥平面BCD;
(Ⅱ)证明:AB∥平面DEF;
(Ⅲ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用反余弦函数值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若将函数f(x)=(x-1)7表示为f(x)=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,其中(ai∈R,i=0,1,2,…,7)为实数,则a4等于-280.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C;
(3)求点D到平面D1AC的距离.

查看答案和解析>>

同步练习册答案