精英家教网 > 高中数学 > 题目详情
7.如图所示的正数数阵中,第一横行是公差为d的等差数列,各列均是公比为q等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,则下列结论中不正确的是(  )
A.d+2q=a1,2B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.每一横行都是等差数列D.ai,j=(2j-1)+21-i(i,j均为正整数)

分析 根据等比数列和等差数列的定义分别求出公差和公比进行判断即可.

解答 解:A.∵第一横行是公差为d的等差数列,各列均是公比为q等比数列,
∴a1,4=a1,1+3d,
即7=1+3d,3d=6得d=2,
∵a4,1=a1,1q3
∴q3=$\frac{1}{8}$,则q=$\frac{1}{2}$.
则a1,2=a1,1+d=1+2=3,而d+2q=2+2×$\frac{1}{2}$=2+1=3,则d+2q=a1,2成立,故A正确,
B.∵a2,3-a2,1=2d=4,a2,1=a1,1q=$\frac{1}{2}$
∴a2,1+a2,3+a2,5+…+a2,21=11a2,1+$\frac{11×10}{2}×4$=11×$\frac{1}{2}$+$\frac{11×10}{2}×4$=$\frac{451}{2}$,故B错误,
C.an,1=a1,1qn-1,an,2=a2.1qn-1
则an,2-an,1=qn-1(an,2-an,1)=dqn-1,为常数,则每一横行都是等差数列,故C正确,
D.ai,j=ai,1+(j-1)d=a1,1qi-1+(j-1)d=($\frac{1}{2}$)i-1+2(j-1)=(2j-1)+21-i(i,j均为正整数),故D正确,
故选:B

点评 本题主要考查命题的真假判断,涉及数列的递推关系,等比数列和等差数列的通项公式,求和公式的应用,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,满足S5=-15,$\frac{3}{7}<d<\frac{1}{2}$,则当Sn取得最小值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=$\left\{\begin{array}{l}{logx,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,输入自变量x的值,输出对应函数值的算法中所用到的基本逻辑结构是(  )
A.顺序结构B.顺序结构、选择结构
C.条件结构D.顺序结构、选择结构、循环结构

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=-sin2x-cosx+2,x∈[0.$\frac{2π}{3}$]的最大值和最小值的和为(  )
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知n=5${∫}_{0}^{π}$sinxdx,则二项式(2a-3b+c)n的展开式中a2bcn-3的系数为-4320.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….
(1)求a3,a4的值;
(2)证明数列{lg(1+an)}是等比数列,并求数列{an}的通项公式;
(3)记bn=$\frac{1}{a_n}$+$\frac{1}{{{a_n}+2}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中正确的是(  )
A.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$D.若$\overrightarrow{a}$≠$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$不是共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在二项式(9x-$\frac{1}{{3\root{3}{x}}}}$)n的展开式中,偶数项的二项式系数之和为256,则展开式中x的系数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn=n2-8n.
(1)求数列{|an|}的通项公式;
(2)若Hn=|a1|+|a2|+…+|an|,求Hn

查看答案和解析>>

同步练习册答案