精英家教网 > 高中数学 > 题目详情
19.下列说法中正确的是(  )
A.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$D.若$\overrightarrow{a}$≠$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$不是共线向量

分析 根据平面向量的基本概念,对选项中的命题进行分析、判断即可.

解答 解:向量的模长能比较大小,但向量不能比较大小,故选项A错误;
当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,方向不同时,$\overrightarrow{a}$=$\overrightarrow{b}$不成立,所以B错误;
当$\overrightarrow{a}$=$\overrightarrow{b}$时,$\overrightarrow{a}$与$\overrightarrow{b}$方向相同,模长相等,所以$\overrightarrow{a}$∥$\overrightarrow{b}$,C正确;
当$\overrightarrow{a}$≠$\overrightarrow{b}$时,$\overrightarrow{a}$与$\overrightarrow{b}$也可能是共线向量,所以D错误.
故选:C.

点评 本题考查了平面向量的基本概念与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于点E.
(1)求证:CD2-DE2=AE•EC;
(2)若CD的长等于⊙O的半径,求∠ACD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知三棱柱ABC-A′B′C′的所有棱长都是2,且∠A′AB=∠A′AC=60°.
(1)求证:点A′在底面ABC内的射影在∠BAC的平分线上;
(2)求棱柱ABC-A′B′C′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的正数数阵中,第一横行是公差为d的等差数列,各列均是公比为q等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,则下列结论中不正确的是(  )
A.d+2q=a1,2B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.每一横行都是等差数列D.ai,j=(2j-1)+21-i(i,j均为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,侧面PBC是边长为2的等边三角形,点E是PC的中点,且平面PBC⊥平面ABCD.
(Ⅰ)求异面直线PD与AC所成角的余弦值;
(Ⅱ)若点F在PC边上移动,是否存在点F使平面BFD与平面APC所成的角为90°?若存在,则求出点F坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+ax-2xlnx(a∈R).
(1)当a=5时,判断g(x)=f(x)-$\frac{1}{2}$x2在[1,e]上的单调性并加以证明;
(2)当a=4-e时,试探讨函数f(x)在(0,+∞)上是否存在极小值?,若存在,求出极小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
603090
9020110
合计15050200
(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.
附参考公式与数据:K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.0050.001
k02.7063.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用反余弦函数值的形式表示各式中的x:
(1)cosx=$\frac{3}{4}$,x∈[0,π];
(2)cosx=-$\frac{\sqrt{5}}{5}$,x∈[0,π];
(3)cosx=-$\frac{\sqrt{5}}{5}$,x∈[-π,0];
(4)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,0];
(5)cosx=$\frac{3}{4}$,x∈[$\frac{3π}{2}$,2π];
(6)cosx=$\frac{3}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(7)cosx=-$\frac{\sqrt{5}}{5}$,x∈[$\frac{1}{2}$π,$\frac{3}{2}$π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等腰梯形ABCD中,AD∥BC,AC、BD交于点Q,AC平分∠DAB,AP为梯形ABCD外接圆的切线,交BD的延长线于点P.
(1)求证:PQ2=PD•PB;
(2)若AB=4,AP=3,AD=$\frac{3}{2}$,求AQ的长.

查看答案和解析>>

同步练习册答案