精英家教网 > 高中数学 > 题目详情
9.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于点E.
(1)求证:CD2-DE2=AE•EC;
(2)若CD的长等于⊙O的半径,求∠ACD的大小.

分析 (1)证明△BCD∽△CDE,得出CD2=DE•DB,再利用DE•DB=DE•(DE+BE)即可证明结论成立;
(2)连接OC、OD,利用等边△OCD,即可求出∠ACD的大小.

解答 解:(1)证明:∵∠ABD=∠CBD,∠ABD=∠ECD,
∴∠CBD=∠ECD,
又∠CDB=∠EDC,
∴△BCD∽△CDE,
∴$\frac{DE}{DC}$=$\frac{DC}{DB}$,
∴CD2=DE•DB;
又DE•DB═DE•(DE+BE)=DE2+DE•BE,且DE•BE=AE•EC,
∴CD2-DE2=AE•EC;
(2)如图所示,

连接OC、OD,
由题意知△OCD是等边三角形,
∴∠COD=60°,
∴∠CBD=$\frac{1}{2}$∠COD=30°,
∴∠ACD=∠CBD=30°.

点评 本题考查了与圆有关的线段成比例的应用问题,也考查了等边三角形的性质与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.
(Ⅰ)证明:C,E,F,D四点共圆;
(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,b>0,b为常数,函数f(x)=ax-bx2
(I)若对x∈R都有f(x)≤1,且当x∈[0,1]时,f(x)为单调函数,证明:b≤1;
(Ⅱ)若对任意x∈[0,1],都|f(x)|≤1,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的前n项和为Sn,满足S5=-15,$\frac{3}{7}<d<\frac{1}{2}$,则当Sn取得最小值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥P-ABC的四个顶点郡在同一球面上,球心在面ABC上的射影为H,H在棱BC上,AP⊥面ABC,且AP=1,PB=PC=$\sqrt{2}$.则此球的体积为(  )
A.$\frac{3π}{4}$B.$\frac{3π}{2}$C.$\frac{\sqrt{3}π}{4}$D.$\frac{\sqrt{3}π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=2acos(2x-$\frac{π}{3}$)+b的定义域是[0,$\frac{π}{2}$],值域是[-5,1],求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-1)>0}=(  )
A.{x|x<-2或x>3}B.{x|x<0或x>2}C.{x|x<0或x>3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=$\left\{\begin{array}{l}{logx,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,输入自变量x的值,输出对应函数值的算法中所用到的基本逻辑结构是(  )
A.顺序结构B.顺序结构、选择结构
C.条件结构D.顺序结构、选择结构、循环结构

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中正确的是(  )
A.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$D.若$\overrightarrow{a}$≠$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$不是共线向量

查看答案和解析>>

同步练习册答案