精英家教网 > 高中数学 > 题目详情
精英家教网函数f(x)=Asin(ωx+φ)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2012)的值为
 
分析:由题意求出A,T,利用周期公式求出ω,利用当x=3时取得最大值0,求出φ,得到函数的解析式,然后化简f(1)+f(2)+f(3)+…+f(2012)求解即可.
解答:解:由题意可知A=2,T=6,所以ω=
π
3
,当x=3时取得最大值0,所以0=2sin(
π
3
×3
+φ),φ=0,所以f(x)=2sin
π
3
x,因为函数的周期为6,f(1)+f(2)+f(3)+…+f(6)=0
∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)=2sin
π
3
+2sin
3
=2
3

故答案为:2
3
点评:本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,以及周期在函数解析式中的利用,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的图象如图所示,为了得到y=2cos2x的图象,则只要将f(x)的图象)向
平移
π
12
π
12
个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值为4,最小正周期为
3

(1)求函数f(x)的解析式;
(2)设a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,若△EFG是边长为2的正三角形,则f(1)=(  )
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步练习册答案