【题目】已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:
![]()
假设学生甲每次考试各题的得分相互独立.
(1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;
(2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第1、2题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“
”表示一个阳爻,“
”表示一个阴爻).若从八卦中任取两卦,这两卦的六个爻中恰有一个阳爻的概率为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
的焦点,
是其准线
上任意一点,过点
作直线
,
与抛物线
相切,
,
为切点,
,
与
轴分别交于
,
两点.
![]()
(1)求焦点
的坐标,并证明直线
过点
;
(2)求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019新型冠状病毒感染的肺炎的传播有飞沫、气溶胶、接触等途径,为了有效抗击疫情,隔离性防护是一项具体有效措施.某市为有效防护疫情,宣传居民尽可能不外出,鼓励居民的生活必需品可在网上下单,商品由快递业务公司统一配送(配送费由政府补贴).快递业务主要由甲公司与乙公司两家快递公司承接:“快递员”的工资是“底薪+送件提成”.这两家公司对“快递员”的日工资方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成5元,假设同一公司的快递员每天送件数相同,现从这两家公司往年忙季各随机抽取一名快递员并调取其100天的送件数,得到如下条形图:
![]()
(1)求乙公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题:
①记甲公司的“快递员”日工资为X(单位:元).求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当
数值大于或等于20.5时,我们说体重较重,当
数值小于20.5时,我们说体重较轻,身高大于或等于
我们说身高较高,身高小于170cm我们说身高较矮.
(Ⅰ)已知某高中共有32名男体育特长生,其身高与
指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有
的把握认为男生的身高对
指数有影响.
![]()
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为
.利用已经求得的线性回归方程,请完善下列残差表,并求
(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 |
|
|
|
|
|
|
|
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为
.小明重新根据最小二乘法的思想与公式,已算出
,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.
参考数据:
,
,
,
,
参考公式:
,
,
,
,
.
| 0.10 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
.
(1)当
时,求函数
图象在
处的切线方程;
(2)若对任意
,不等式
恒成立,求
的取值范围;
(3)若
存在极大值和极小值,且极大值小于极小值,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为![]()
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)已知点
,点
为曲线
上的动点,求线段
的中点
到直线
的距离的最大值.并求此时点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com