精英家教网 > 高中数学 > 题目详情
函数f(x)=log2x在区间[a,2a](a>0)上最大值与最小值之差为
 
考点:函数最值的应用
专题:函数的性质及应用
分析:根据该对数函数在[a,2a]上的单调性,即可求出最大值与最小值之差.
解答: 解:f(x)在[a,2a]上单调递增,所以最大值与最小值之差为:log22a-log2a=1.
故答案为:1.
点评:考查对数函数的单调性,对数的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为等比数列{an}的前n项和,若a1=1,a4=2S3+1,则该数列的公比q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-(
2
3
)x
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将2名主治医生,4名实习医生分成2个小组,分别安排到A、B两地参加医疗互助活动,每个小组由1名主治医生和2名实习医生组成,实习医生甲不能分到A地,则不同的分配方案共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l的方程为:x+sinαy+1=0(α∈R),则其倾斜角的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是赵爽弦图,正方形ABCD面积为13.四个全等的直角三角形中,较短边长为2.向正方形ABCD内投一飞镖,则飞镖落在小正方形EFGH内的概率为(  )
A、
1
13
B、
2
13
C、
3
13
D、
4
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y为正实数,且x+4y=1,则xy的最大值为(  )
A、
1
4
B、
1
8
C、
1
16
D、
1
32

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,边长为3的正方形中有一封闭曲线围成的阴影区域,在正方形中随机的撒一粒豆子,它落在阴影区域内的概率为
1
3
,则阴影区域的面积为(  )
A、
4
3
B、
8
3
C、3
D、无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+siny=
1
3
,则u=siny+cos2x的最小值是(  )
A、-
1
9
B、-
2
3
C、1
D、
5
4

查看答案和解析>>

同步练习册答案