精英家教网 > 高中数学 > 题目详情
(2009•奉贤区一模)已知点(1,
13
)是函数f(x)=ax (a>0且,a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,求数列{an}的通项公式.
分析:将点(1,
1
3
)代入函数f(x)=ax 解析式,得a=
1
3
,从而等比数列{an}的前n项和Sn=(
1
3
)
n
-c.利用Sn与an关系求出特殊项a2,a3,再利用等比数列定义求出a1,q.
通项公式便可求出.
解答:解:将点(1,
1
3
)代入函数f(x)=ax 解析式,得a=
1
3

f(x)=(
1
3
)x
(3分)
∴等比数列{an}的前n项和Sn=(
1
3
)
n
-c
a2=[f(2)-c]-[f(1)-c]=-
2
9
a3=[f(3)-c]-[f(2)-c]=-
2
27
     (3分)
又数{an}成等比数列,a1
a
2
2
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c
,所以 c=1;  (3分)
又公比q=
a3
a2
=
1
3
,所以   an=-
2
3
(
1
3
)
n-1
=-2(
1
3
)
n
n∈N*
;     (3分)
点评:本题主要考查了函数思想,等比数列的通项公式、定义,Sn与an关系的应用.是好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•奉贤区一模)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区一模)已知数列{an}前n项和Sn=
1
3
an-1
,则数列{an}的通项公式
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1
an=3•(-
1
2
)n
,或an=-
3
2
•(-
1
2
)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区一模)若行列式
.
456
101
sinx81
.
中,元素5的代数余子式不小于0,则x满足的条件是
x=2kπ+
π
2
,k∈Z
x=2kπ+
π
2
,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区一模)已知矩阵A=
cosαsinα
01
,B=
cosβ0
sinβ1
,则AB=
cos(α-β)sinα
sinβ1
cos(α-β)sinα
sinβ1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区一模)已知函数f(x)=
6
x2+1

(1)在直角坐标系中,画出函数f(x)=
6
x2+1
大致图象.
(2)关于x的不等式f(x)≥k-7x2的解集一切实数,求实数k的取值范围;
(3)关于x的不等式f(x)>
a
x
的解集中的正整数解有3个,求实数a的取值范围.

查看答案和解析>>

同步练习册答案