分析 (1)利用三角形面积公式列出关系式,把已知面积及c,sinA的值代入求出b的值,再利用余弦定理求出a的值即可;
(2)利用余弦定理列出关系式,把a,b,cosA的值代入求出c的值即可.
解答 解:(1)∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$,c=2,A=60°,
∴$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$b×2×$\frac{\sqrt{3}}{2}$,即b=1,
由余弦定理得:a2=b2+c2-2bccosA=1+4-2=3,
解得:a=$\sqrt{3}$;
(2)∵A=$\frac{π}{3}$,a=$\sqrt{15}$,b=4,
∴由余弦定理得:a2=b2+c2-2bccosA,即15=16+c2-4c,
解得:c=2±$\sqrt{3}$.
点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象向右平移$\frac{2π}{3}$个单位,再将所得图象所得点的横坐标变为原来的$\frac{1}{2}$ | |
| B. | 将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位,再将所得图象所得点的横坐标变为原来的$\frac{1}{2}$ | |
| C. | 将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象所有点的横坐标变为原来的2倍,再将所得图象向右平移$\frac{π}{3}$个单位 | |
| D. | 将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象所有点的横坐标变为原来的$\frac{1}{2}$倍,再将所得图象向右平移$\frac{2π}{3}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2+1≤0 | B. | ?x∈R,x2+1≤0 | C. | ?x∈R,x2+1>0 | D. | ?x∈R,x2+1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com