精英家教网 > 高中数学 > 题目详情
19.直线x-$\sqrt{3}$y+1=0的倾斜角为(  )
A.30°B.45°C.60°D.90°

分析 根据题意,设直线x-$\sqrt{3}$y+1=0的倾斜角为θ,将直线变形为y=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$,分析可得其斜率k=$\frac{\sqrt{3}}{3}$,进而由倾斜角与斜率的关系可得k=tanθ=$\frac{\sqrt{3}}{3}$,结合θ的范围,计算可得答案.

解答 解:根据题意,设直线x-$\sqrt{3}$y+1=0的倾斜角为θ,
直线x-$\sqrt{3}$y+1=0可以变形为y=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$,
其斜率k=tanθ=$\frac{\sqrt{3}}{3}$,
又由0°≤θ<180°,
则θ=30°;
故选:A.

点评 本题考查直线的倾斜角的计算,解题的关键是理解直线的斜率与倾斜角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.直线l1的斜率k1=$\frac{1}{2}$,直线l2的倾斜角是直线l1的倾斜角的2倍,则直线l2的斜率k2=(  )
A.1B.$\frac{1}{2}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinx+cosx,x∈R.
(Ⅰ)求f($\frac{π}{2}$)的值;
(Ⅱ)求函数f(x)的最小正周期;
(Ⅲ)求函数g(x)=f(x+$\frac{π}{4}$)+f(x+$\frac{3π}{4}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:$\frac{1+sinα-cosα}{1+sinα+cosα}$=$\frac{1-cosα}{sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξ≤100)=0.40,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取(  )
A.5份B.10份C.15份D.20份

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知某回归分析中,模型A的残差图的带状区域宽度比模型B的残差图的带状区域宽度窄,则在该回归分析中拟合精度较高的模型是模型A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C1:(x+2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,点P是y轴上的动点,则|PB|-|PA|的最大值为(  )
A.$\sqrt{2}$+4B.5$\sqrt{2}-4$C.$\sqrt{2}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,角A、B、C所对的边分别为a,b,c,若△ABC的面积是$\frac{1}{2}$c2,则$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{ab}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x||x-2|<a},B={x|x2-2x-3<0},若B⊆A,则实数a的取值范围是a≥3.

查看答案和解析>>

同步练习册答案