精英家教网 > 高中数学 > 题目详情
10.设向量$\overrightarrow a=(x,2),\overrightarrow b=(4,\frac{1}{2}x)$,若$\overrightarrow a,\overrightarrow b$方向相反,则x的值为(  )
A.0B.±4C.4D.-4

分析 利用两向量是相反向量的性质直接求解.

解答 解:∵向量$\overrightarrow a=(x,2),\overrightarrow b=(4,\frac{1}{2}x)$,$\overrightarrow a,\overrightarrow b$方向相反,
∴$\left\{\begin{array}{l}{\frac{x}{4}=\frac{2}{\frac{1}{2}x}}\\{x<0}\end{array}\right.$,解得x=-4.
故选:D.

点评 本题考查实数值的求法,考查相反向量等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设f′(x)是函数f(x)(x∈R)的导数,且满足xf′(x)-2f(x)>0,若△ABC是锐角三角形,则(  )
A.f(sinA)•sin2B>f(sinB)•sin2AB.f(sinA)•sin2B<f(sinB)•sin2A
C.f(cosA)•sin2B>f(sinB)•cos2AD.f(cosA)•sin2B<f(sinB)•cos2A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{5x,x>0}\\{-2,x=0}\\{(x+3)^{\frac{1}{2}},x<0}\end{array}\right.$,b=f(f(f(0))),若y=xa-b是偶函数,且在(0,+∞)上是减函数,则自然数a=1或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三角形三个顶点分别是A(-3,0),B(2,-2),C(0,1),求这个三角形三边各自所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若A,B,C是直线l上不同的三个点,若O不在l上,存在实数x使得${x^2}\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{BC}$=$\overrightarrow{0}$,实数x为(  )
A.-2B.0C.$\frac{{-1+\sqrt{5}}}{2}$D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow a=(cosθ,sinθ),\overrightarrow b=(1,-1)-\frac{π}{2}≤θ≤\frac{π}{2}$
(1)当$\overrightarrow a⊥\overrightarrow b$时,求θ值;
(2)求$|\overrightarrow a-\overrightarrow b|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosα=$-\frac{4}{5}$,且α为第二象限角,则sinα=(  )
A.$\frac{4}{3}$B.$\frac{3}{5}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2bcosC=acosC+ccosA.
(Ⅰ)求角C的大小;
(Ⅱ)若b=2,a=6,D为BC的中点,求AD的长以及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(x+m)lnx曲线y=f(x)在x=e处切线与y=2x平行.
(1)求实数m值及y=f(x)极值
(2)若当x>1时,函数y=(ax+1)(x-1)图象恒在y=(a+1)f(x)图象上方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案