精英家教网 > 高中数学 > 题目详情
已知P(x,y)为区域
y2-x2≤0
0≤x≤a
内的任意一点,当该区域的面积为4时,z=2x-y的
最大值是(  )
A、6
B、0
C、2
D、2
2
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,求出使可行域面积为4的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.
解答: 解:由
y2-x2≤0
0≤x≤a
作出可行域如图,

由图可得A(a,-a),B(a,a),
SOAB=
1
2
•2a•a=4
,得a=2.
∴A(2,-2),
化目标函数z=2x-y为y=2x-z,
∴当y=2x-z过A点时,z最大,等于2×2-(-2)=6.
故选:A.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明:f(x)=
2x+1
在[-
1
2
,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(3x-1)=x3-2x+1,求f(5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=an5,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=cos4x+sin2x的周期是(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

某快递公司邮递员500千米以内包裹标准如下:首重1000克内8元,续重在5000克以内,每500克2.2元,续重在5000克以上的部分,每500克1.5元.现在要将一件重5500克的包裹从A地邮递到相距350千米的B地,需要支付邮递费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x=3m+1,m∈N},N={y|y=3n-2,n∈N},则M与N的关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a+1)x+a2,若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在区间(-∞,(a+1)2) 上都是减函数,求f(1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x,x∈[-a,a],a>0,若f(x)在[-a,a]上是减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案