精英家教网 > 高中数学 > 题目详情
(2009•黄冈模拟)在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答这道题对的概率是
3
4
,甲、丙两人都回答错的概率是
1
12
,乙、丙两人都回答对的概率是
1
4

(Ⅰ)求乙、丙两人各自回答这道题对的概率;
(Ⅱ)用ξ表示回答该题对的人数,求ξ的分布列和数学期望Eξ.
分析:(I)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A、B、C,根据题意可建立关系式P(A)=
3
4
,且有
P(
.
A
)•P(
.
C
)=
1
12
P(B)•P(C)=
1
4
,然后根据相互独立事件的概率公式解之即可;
(II)ξ的可能取值为:0、1、2、3,然后分别求出相应的概率,列出分布列,利用数学期望公式解之即可.
解答:解:(Ⅰ)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A、B、C,则P(A)=
3
4
,且有
P(
.
A
)•P(
.
C
)=
1
12
P(B)•P(C)=
1
4
,即
[1-P(A)]•[1-P(C)]=
1
12
P(B)•P(C)=
1
4

P(B)=
3
8
P(C)=
2
3
.…6′
(Ⅱ)由(Ⅰ)P(
.
A
)=1-P(A)=
1
4
P(
.
B
)=1-P(B)=
1
3
.ξ的可能取值为:0、1、2、3.
P(ξ=0)=P(
.
A
.
B
.
C
)=
1
4
1
3
5
8
=
5
96
P(ξ=1)=P(A•
.
B
.
C
)+P(
.
A
•B•
.
C
)+P(
.
A
.
B
•C)=
3
4
5
8
1
3
+
1
4
3
8
2
3
+
3
4
5
8
2
3
=
7
24
P(ξ=2)=P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C)=
15
32
P(ξ=3)=P(A•B•C)=
3
16
.…9′
∴ξ的分布列为
ξ 0 1 2 3
P
5
96
7
24
15
32
3
16
ξ的数学期望Eξ=0•
5
96
+1•
7
24
+2•
15
32
+3•
3
16
=
43
24
.…12′
点评:本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量及其分布列和数学期望,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄冈模拟)某地正处于地震带上,预计20年后该地将发生地震.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64am2,每年拆除的数量相同;新城区计划用十年建成,第一年建设住房面积2am2,开始几年每年以100%的增长率建设新住房,然后从第五年开始,每年都比上一年减少2am2
(1)若10年后该地新、旧城区的住房总面积正好比目前翻一番,则每年旧城区拆除的住房面积是多少m2
(2)设第n(1≤n≤10且n∈N)年新城区的住房总面积为Snm2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的命题的个数是
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0则
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)已知函数f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x,y,记ξ=x+y.
(1)求随机变量ξ的分布列及数学期望;
(2)设“函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

同步练习册答案