精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且椭圆C上一点M与椭圆左右两个焦点构成的三角形周长为4+2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,直线DA、DB与y轴的交点分别为P、Q,求证:∠PF1F2+∠QF1F2=90°.

分析 (1):由题意可得:e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,2a+2c=4+2$\sqrt{2}$,又a2=b2+c2.联立解出即可得出椭圆C的方程.
(2)设D(x0,y0),则$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{2}$=1.把y=m代入椭圆方程可得:A(-$\sqrt{4-2{m}^{2}}$,m),B($\sqrt{4-2{m}^{2}}$,m).利用点斜式可得:直线DA的方程与直线DB的方程,可得P,Q的坐标.利用斜率公式只要证明${k}_{P{F}_{1}}$•${k}_{Q{F}_{1}}$=1即可得出.

解答 (1)解:由题意可得:e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,2a+2c=4+2$\sqrt{2}$,又a2=b2+c2
联立解得:a=2,b=c=$\sqrt{2}$.
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)证明:F1$(-\sqrt{2},0)$.
设D(x0,y0),则$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{2}$=1.
把y=m代入椭圆方程可得:$\frac{{x}^{2}}{4}$+$\frac{{m}^{2}}{2}$=1,解得x=±$\sqrt{4-2{m}^{2}}$.
取A(-$\sqrt{4-2{m}^{2}}$,m),B($\sqrt{4-2{m}^{2}}$,m).
直线DA的方程为:y-y0=$\frac{m-{y}_{0}}{-\sqrt{4-2{m}^{2}}-{x}_{0}}$(x-x0),可得P$(0,\frac{(m-{y}_{0}){x}_{0}}{\sqrt{4-2{m}^{2}}+{x}_{0}}+{y}_{0})$.
同理可得:直线DB的方程为:y-y0=$\frac{m-{y}_{0}}{\sqrt{4-2{m}^{2}}-{x}_{0}}$(x-x0),可得Q$(0,\frac{-{x}_{0}(m-{y}_{0})}{\sqrt{4-2{m}^{2}}-{x}_{0}}+{y}_{0})$.
∴${k}_{P{F}_{1}}$=$\frac{m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}+{x}_{0})}$,
${k}_{Q{F}_{1}}$=$\frac{-m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}-{x}_{0})}$.
又${y}_{0}^{2}$=2-$\frac{{x}_{0}^{2}}{2}$.
∴${k}_{P{F}_{1}}$•${k}_{Q{F}_{1}}$=$\frac{m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}+{x}_{0})}$•$\frac{-m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}-{x}_{0})}$=$\frac{{y}_{0}^{2}(4-2{m}^{2})-{m}^{2}{x}_{0}^{2}}{2(4-2{m}^{2}-{x}_{0}^{2})}$=$\frac{(2-\frac{{x}_{0}^{2}}{2})(4-2{m}^{2})-{m}^{2}{x}_{0}^{2}}{2(4-2{m}^{2}-{x}_{0}^{2})}$=1.
∴∠PF1F2+∠QF1F2=90°.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、直线方程、斜率计算公式、点与椭圆的位置关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知全集为实数R,M={x|x+3>0},则∁RM为(  )
A.{x|x>-3}B.{x|x≥-3}C.{x|x<-3}D.{x|x≤-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-$\frac{1}{4}$时,函数g(x)=f(x)-k在[0,2]内有两个零点,求实数k的取值范围;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{3}}{2}$),F1,F2是椭圆C的两个焦点,|F1F2|=2$\sqrt{3}$,P是椭圆C上的一个动点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P在第一象限,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$≤$\frac{1}{4}$,求点P的横坐标的取值范围;
(Ⅲ)是否存在过定点N(0,2)的直线l交椭圆C交于不同的两点A,B,使∠AOB=90°(其中O为坐标原点)?若存在,求出直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间$[{-\frac{π}{2},\frac{π}{2}}]$上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的奇函数f(x),满足对任意t∈R都有f(2+t)+f(t)=0,且x∈[0,1]时,f(x)=$\frac{ex}{{e}^{x}}$,若函数g(x)=f(x)-loga|x|在其定义域上有5个零点,则实数a的值为(  )
A.7或$\frac{1}{7}$B.5或$\frac{1}{5}$C.3或$\frac{1}{3}$D.e或$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x2+3f′(1)x+2,则f(1)=(  )
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{4-{2}^{-x},x≤0}\end{array}\right.$,若关于x的方程f(2x2+x)=a恰有6个不同的实数根,则实数a的取值范围是[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.已知p:?a∈R,方程ax2-2x+a=0有正实数,则¬p:?a∈R,方程ax2-2x+a=0有负实根
B.若X~N(3,4),则P(X<1-3a)=P(X>a2+7)成立的一个必要不充分条件是a=2
C.若函数f(x)=-$\frac{1}{3}$x3+2x2-mx-1在R上是减函数,则m>4
D.若y与x的相关系数r=1,则y与x有线性相关关系,且正相关

查看答案和解析>>

同步练习册答案