6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl1¹ýÍÖÔ²CµÄ½¹µã¼°µãB£¨0£¬-2$\sqrt{3}$£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßl2¹ýÍÖÔ²CµÄ×ó½¹µãF£¬½»ÍÖÔ²CÓÚµãP¡¢Q£¬ÈôÖ±Ïßl2ÓëÁ½×ø±êÖá¶¼²»´¹Ö±£¬ÊÔÎÊxÖáÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃMFǡΪ¡ÏPMQµÄ½Çƽ·ÖÏߣ¿Èô´æÔÚ£¬ÇóµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Ö±Ïßl1¹ýÍÖÔ²CµÄÓÒ½¹µã£¨c£¬0£©£¬$\frac{-2\sqrt{3}-0}{0-c}=\sqrt{3}$£¬µÃc=2£¬ÓÖÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬µÃ$\frac{3}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
£¨¢ò£©ÉèµãM£¨m£¬0£©£¬×ó½¹µãΪF£¨-2£¬0£©£¬ÉèÖ±ÏßPQµÄ·½³Ì£¬ÓëÍÖÔ²ÁªÁ¢£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢½Çƽ·ÖÏßÐÔÖÊ¡¢ÍÖÔ²ÐÔÖÊ£¬½áºÏÒÑÌõÌõ¼þÄÜÇó³öµãM×ø±ê£®

½â´ð ½â£¨¢ñ£©Ð±ÂÊΪ$\sqrt{3}$µÄÖ±Ïßl1¹ýÍÖÔ²CµÄ½¹µã¼°µãB£¨0£¬-2$\sqrt{3}$£©£®ÔòÖ±Ïßl1¹ýÍÖÔ²CµÄÓÒ½¹µã£¨c£¬0£©
$\frac{-2\sqrt{3}-0}{0-c}=\sqrt{3}$£¬¡àc=2£¬
ÓÖ¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\sqrt{3}$£¬1£©£¬¡à$\frac{3}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
ÇÒa2=b2+4£¬½âµÃa2=6£¬b2=2£®
¡àÍÖÔ²CµÄ·½³Ì£º$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£®
£¨¢ò£©ÉèµãM£¨m£¬0£©£¬×ó½¹µãΪF£¨-2£¬0£©£¬¿ÉÉèÖ±ÏßPQµÄ·½³ÌΪx=$\frac{y}{k}-2$£¬
ÓÉ$\left\{\begin{array}{l}{x=\frac{y}{k}-2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨$\frac{1}{{k}^{2}}+3$£©y2-$\frac{4}{k}y$-2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÔòÔòy1+y2=$\frac{4k}{3{k}^{2}+1}$£¬y1•y2=$\frac{-2{k}^{2}}{3{k}^{3}+1}$£®
ҪʹMFΪ¡ÏPMQµÄÒ»Ìõ½Çƽ·ÖÏߣ¬±ØÂú×ãkPM+kQM=0£®
¼´$\frac{{y}_{1}}{{x}_{1}-m}+\frac{{y}_{2}}{{x}_{2}-m}=0$£¬¡ß${x}_{1}=\frac{{y}_{1}}{k}-2£¬{x}_{2}=\frac{{y}_{2}}{k}-2$£¬
´úÈëÉÏʽ¿ÉµÃ$\frac{2}{k}$y1y2-2£¨y1+y2£©-m£¨y1+y2£©=0
$\frac{2}{k}¡Á\frac{-2{k}^{2}}{1+3{k}^{2}}-£¨m+2£©\frac{4k}{1+3{k}^{2}}=0$£¬½âµÃm=-3£¬¡àµãM£¨-3£¬0£©£®
xÖáÉÏ´æÔÚÒ»µãM£¨-3£¬0£©£¬Ê¹µÃMFǡΪ¡ÏPMQµÄ½Çƽ·ÖÏߣ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ×ø±êµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢½Çƽ·ÖÏßÐÔÖÊ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨x1£¬y1£©ÔÚÇúÏßC1£ºy=x2-lnxÉÏ£¬µãB£¨x2£¬y2£©ÔÚÖ±Ïßx-y-2=0ÉÏ£¬Ôò${{£¨x}_{2}{-x}_{1}£©}^{2}$+${{£¨y}_{2}{-y}_{1}£©}^{2}$µÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=|ax-2|£®
£¨¢ñ£©µ±a=2ʱ£¬½â²»µÈʽf£¨x£©£¾x+1£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©+f£¨-x£©£¼$\frac{1}{m}$ÓÐʵÊý½â£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèF1£¬F2ÊÇË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$µÄÁ½¸ö½¹µã£¬ÈôµãPÔÚË«ÇúÏßÉÏ£¬ÇÒ¡ÏF1PF2=90¡ã£¬|PF1|•|PF2|=2£¬Ôòb=£¨¡¡¡¡£©
A£®1B£®2C£®$\sqrt{2}$D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÈçͼÅ×ÎïÏßC£ºy2=4xµÄÏÒABµÄÖеãP£¨2£¬t£©£¨t¡Ù0£©£¬¹ýµãPÇÒÓëAB´¹Ö±µÄÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚC¡¢D£¬ÓëxÖá½»ÓÚQ£®
£¨¢ñ£©ÇóµãQµÄ×ø±ê£»
£¨¢ò£©µ±ÒÔCDΪֱ¾¶µÄÔ²¹ýA£¬Bʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªF1¡¢F2Ϊ˫ÇúÏߵĽ¹µã£¬¹ýF2´¹Ö±ÓÚʵÖáµÄÖ±Ïß½»Ë«ÇúÏßÓÚA¡¢BÁ½µã£¬BF1½»yÖáÓÚµãC£¬ÈôAC¡ÍBF1£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2$\sqrt{2}$D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚ¡÷ABCÖУ¬ÈýÄÚ½ÇA¡¢B¡¢C¶ÔÓ¦µÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒc=1£¬acosB+bcosA=2cosC£¬ÉèhÊDZßABÉϵĸߣ¬ÔòhµÄ×î´óֵΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô¼¯ºÏP={x¡ÊR|x£¾0}£¬Q={x¡ÊZ|£¨x+1£©£¨x-4£©£¼0}£¬ÔòP¡ÉQ=£¨¡¡¡¡£©
A£®£¨0£¬4£©B£®£¨4£¬+¡Þ£©C£®{1£¬2£¬3}D£®{1£¬2£¬3£¬4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬µ×ÃæÎªÆ½ÐÐËıßÐεÄËÄÀâÖùABCD-A'B'C'D'ÖУ¬DD'¡ÍÆ½ÃæABCD£¬¡ÏDAB=$\frac{¦Ð}{3}$£¬AB=2AD£¬DD'=3AD£¬E¡¢F·Ö±ðÊÇÏß¶ÎAB¡¢D'EµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºCE¡ÍDF£»
£¨¢ò£©Çó¶þÃæ½ÇA-EF-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸