精英家教网 > 高中数学 > 题目详情

已知是定义在上的奇函数,当时,
(1)求函数的解析式;
(2)画出函数的图象,并求函数的单调区间;
(3)当为何值时,方程有三个解?

解:(1)             
(2)

由图象可得函数的增区间是:, 减区间是:  
(3)由图象得:当时,方程有三个解

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知定义域为的函数是奇函数                   
⑴求函数的解析式;
⑵判断并证明函数的单调性;
⑶若对于任意的,不等式恒成立,求的取值范围.                                             

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(16分)已知函数
(1)求证:函数上为单调增函数;
(2)设,求的值域;
(3)对于(2)中函数,若关于的方程有三个不同的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)判定上的单调性;
(Ⅱ)求上的最小值;
(Ⅲ)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数的图象:
(1)写出的解析式  
(2)记,讨论的单调性 
(3)若时,总有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断的奇偶性;
(2)求满足的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若函数为奇函数,求的值;
(2)判断函数上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数
(1)求实数m的值,并在给出的直角坐标系中画出的图象;

(2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)
(2)

查看答案和解析>>

同步练习册答案