精英家教网 > 高中数学 > 题目详情

已知函数).
(1)若函数为奇函数,求的值;
(2)判断函数上的单调性,并证明.

(1)
(2)略

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,当时,
(1)求函数的解析式;
(2)画出函数的图象,并求函数的单调区间;
(3)当为何值时,方程有三个解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的单调递增区间;
(2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是关于的方程的两根,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数的导函数为,若函数的图像关于直线对称,且.
(1)求实数a、b的值
(2)若函数恰有三个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知,且.
(1)求实数的值;
(2)求函数的单调递增区间及最大值,并指出取得最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知是定义在R上的减函数,且
求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时,
f(x)= .
(Ⅰ)求f(x)在[-1, 1]上的解析式;   (Ⅱ)证明f(x)在(0, 1)上时减函数; 
(Ⅲ)当λ取何值时, 方程f(x)=λ在[-1, 1]上有解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设时,的最小值是-1,最大值是1,求的值.

查看答案和解析>>

同步练习册答案