精英家教网 > 高中数学 > 题目详情
14.函数y=(3-x2)e-x的递增区间为(  )
A.(-∞,0)B.(3,-1)C.(-∞,3)及(1,+∞)D.(-∞,-1)及(3,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可.

解答 解:y′=-2x•e-x+(3-x2)(-e-x)=e-x(x2-2x-3),
令y′>0,解得:x>3或x<-1,
故f(x)在(-∞,-1)递增,在(3,+∞)也递增,
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设集合A={x|-5≤x≤3},B={x<-2或x>4},求A∩B、(∁RA)∩B、(∁RA)∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z1=1+i,z2=3-2i,则复数$\frac{z_2}{z_1}$=(  )
A.$-\frac{1}{2}-\frac{5}{2}i$B.$-\frac{1}{2}+\frac{5}{2}i$C.$\frac{1}{2}-\frac{5}{2}i$D.$\frac{1}{2}+\frac{5}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log5|x|的图象交点个数为(  )
A.2B.6C.8D.多于8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(文科)定义:若各项为正实数的数列{an}满足${a_{n+1}}=\sqrt{a_n}(n∈{N^*})$,则称数列{an}为“算术平方根递推数列”.
已知数列{xn}满足${x_n}>0,n∈{N^*}$,且${x_1}=\frac{9}{2}$,点(xn+1,xn)在二次函数f(x)=2x2+2x的图象上.
(1)试判断数列{2xn+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;
(2)记yn=lg(2xn+1)(n∈N*),求证:数列{yn}是等比数列,并求出通项公式yn
(3)从数列{yn}中依据某种顺序自左至右取出其中的项${y_{n_1}},{y_{n_2}},{y_{n_3}},…$,把这些项重新组成一个新数列{zn}:${z_1}={y_{n_1}},{z_2}={y_{n_2}},{z_3}={y_{n_3}},…$.
 若数列{zn}是首项为${z_1}={(\frac{1}{2})^{m-1}}$,公比为$q=\frac{1}{2^k}(m,k∈{N^*})$的无穷等比数列,且数列{zn}各项的和为$\frac{1}{3}$,求正整数k、m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数与y=x有相同图象的一个函数是(  )
A.y=($\sqrt{x}$)2B.y=$\frac{x^2}{x}$
C.y=${a^{{{log}_a}x}}$(a>0且a≠1)D.y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.判断下列命题正确的是②③④
①若$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$($\overrightarrow c$≠$\overrightarrow 0$),则$\overrightarrow a$=$\overrightarrow b$;
②已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(3,-4),则$\overrightarrow a$在$\overrightarrow b$上的投影为-$\frac{6}{5}$;
③数列{an},{bn}均为等差数列,前n项和分别为Sn,Tn.若$\frac{S_n}{T_n}$=$\frac{3n-2}{5n+1}$,则$\frac{a_5}{b_5}$=$\frac{25}{46}$;
④|$\overrightarrow{AB}$|$\overrightarrow{PC}$+|$\overrightarrow{BC}$|$\overrightarrow{PA}$+|$\overrightarrow{CA}$|$\overrightarrow{PB}$=$\overrightarrow 0$⇒P为△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=a+$\frac{h(x)-3sinx}{h(x)}$(x∈R)存在最大值M和最小值N,若函数h(x)是R上的偶函数,且M+N=8.则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={x∈R|x2<9},B={x∈R|2x<4},C={x∈R|log${\;}_{\frac{1}{2}}}$x<2},则A∩B=(-3,2);A∪C=(-3,+∞);∁RB=[2,+∞).

查看答案和解析>>

同步练习册答案