精英家教网 > 高中数学 > 题目详情
三条两两平行的直线可以确定平面的个数为(  )
A、0B、1C、0或1D、1或3
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:根据直线平行的性质即可得到结论.
解答: 解:若三条直线在同一故平面内,则此时三条直线只能确定一个平面,
若三条直线不在同一故平面内,则此时三条直线能确定三个平面,
故三条两两平行的直线可以确定平面的个数为1个或3个,
故选:D
点评:本题主要考查平面的基本性质和推理,根据直线的位置是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程(x+y-1)
x2+y2-4
=0表示什么曲线,请作图说明!

查看答案和解析>>

科目:高中数学 来源: 题型:

在探究函数f(x)=x3+
3
x
,x∈(-∞,0)∪(0,+∞)的最值中,
(Ⅰ)先探究函数y=f(x)在区间(0,+∞)上的最值,列表如下:
x0.10.20.50.70.911.11.21.32345
y30.015.016.134.64.0644.064.234.509.52864.75125.6
观察表中y值随x值变化的趋势,知x=
 
时,f(x)有最小值为
 

(Ⅱ)再依次探究函数y=f(x)在区间(-∞,0)上以及区间(-∞,0)∪(0,+∞)上的最值情况(是否有最值?是最大值或最小值?),请写出你的探究结论,不必证明;
(Ⅲ)设g(x)=3x2+
1
x2
,若g(2x)-k•2x≥0在x∈[-1,1]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题正确的是
 

①若a2+b2=8,则ab的最大值为4;
②若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为2n+1+n2-2;
③若x∈R,则x+
4
x-2
的最小值为6;
④已知数列{an}的递推关系a1=1,an=3an-1+2(n≥2,n∈N*),则通项an=2•3n-1.
⑤已知
1≤x+y≤3
-1≤x-y≤1
则4x+2y的取值范围是[0,12].

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,阴影部分由曲线y=
x
与y轴及直线y=2围成,则阴影部分的面积S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
①命题“若xy=1,则x,y互为倒数”的逆命题;
②命题“面积相等的三角形全等”的否命题;
③命题“若m>1,则x2-2x+m=0有实根”的逆否命题;
④命题“若A∩B=B,则A⊆B”的逆否命题.
其中是真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2
2
=0的距离为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与直线y=x+m相交于不同的两点M、N,问是否存在实数m使|AM|=|AN|;若存在求出m的值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:(x+a)(x-2a+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式x2+3x+k>0恒成立,则实数k的取值(  )
A、k>
4
9
B、k<-
9
4
C、k>
9
4
D、k<
9
4

查看答案和解析>>

同步练习册答案