分析 (1)由题意和正弦定理可得cosC=$\frac{1}{2}$,可得C=$\frac{π}{3}$,再由同角三角函数基本关系和和差角的三角函数公式可得;
(2)由余弦定理和三角形的面积公式,代值计算可得.
解答 解:(1)∵$\frac{acosB+bcosA}{c}$=2cosC,
∴由正弦定理可得sinAcosB+sinBcosA=2sinCcosC,
∴sin(A+B)=2sinCcosC,即sinC=2sinCcosC,
由三角形的内角可得sinC>0,故cosC=$\frac{1}{2}$,C=$\frac{π}{3}$,
∵sinA=$\frac{\sqrt{10}}{10}$,a<c,∴A不可能为钝角,
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{3\sqrt{10}}{10}$,
∴cosB=-cos(A+C)=-$\frac{1}{2}$cosA+$\frac{\sqrt{3}}{2}$sinA=$\frac{(\sqrt{3}-3)\sqrt{10}}{20}$;
(2)S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$•4b•$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
解得b=2,
由余弦定理可得c2=a2+b2-2abcosC=16+4-2×4×2×$\frac{1}{2}$=12,
可得c=2$\sqrt{3}$.
点评 本题考查解三角形,涉及正弦定理和和差角的三角函数,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | (-∞,0] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i≤2011 | B. | i>2011 | C. | i≤1005 | D. | i>1005 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com