精英家教网 > 高中数学 > 题目详情

已知函数,且知当时取得极大值7,当时取得极小值,试求函数的极小值,并求的值。

 

 

【答案】

 

【解析】解:  

 由

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年天津卷文)(12分)

已知函数其中为参数,且

       (I)当时,判断函数是否有极值;

       (II)要使函数的极小值大于零,求参数的取值范围;

       (III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年天津卷理)(12分)

已知函数其中为参数,且

       (I)当时,判断函数是否有极值;

       (II)要使函数的极小值大于零,求参数的取值范围;

       (III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年黑龙江佳木斯市高三第三次调研理科数学试卷(解析版) 题型:解答题

已知函数.

(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;

(2)若函数在定义域上是单调函数,求实数的取值范围;

(3)当时,试比较的大小.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川成都石室中学高三一诊模拟考试(2)理科数学试卷(解析版) 题型:解答题

已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上不单调,求的取值范围;

(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.证明:.

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数.

(1)若且函数的值域为,求的表达式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;

(3)设为偶函数,判断能否大于零?

 

查看答案和解析>>

同步练习册答案