精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点.
(Ⅰ)求证:AB⊥平面PAC:
(Ⅱ)求证:AQ∥平面PC.
考点:直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)根据线面垂直的性质及PA⊥平面ABCD推断出PA⊥AC,PA⊥AB,进而利用PB⊥AC,推断出AC⊥平面PAB,利用线面垂直性质可知AC⊥AB,再根据PA⊥AB,PA,AC?平面PAC,PA∩AC=A推断出AB⊥平面PAC.
(Ⅱ)取PC中点E,连结QE,ED,推断出QE为中位线,判读出QE∥BC,BC=2AD,进而可知QE∥AD,QE=AD,判断出四边形AQED是平行四边形,进而可推断出AQ∥DE,最后根据线面平行的判定定理证明出AQ∥平面PCD.
解答: 证明:(Ⅰ)∵PA⊥平面ABCD,AC,AB?平面ABCD,
∴PA⊥AC,PA⊥AB,
∵PB⊥AC,AP⊥AC,PA,PB?平面PAB,PA∩PB=P,
∴AC⊥平面PAB,
∵AB?平面PAB,
∴AC⊥AB,PA⊥AB,PA,AC?平面PAC,PA∩AC=A;
∴AB⊥平面PAC.
(Ⅱ)取PC中点E,连结QE,ED,
∵Q是线段PB的中点,E是PC的中点,
∴QE∥BC,BC=2AD,
∴QE∥AD,QE=AD,
∴四边形AQED是平行四边形,
∴AQ∥DE,
∵AQ∥ED,ED?平面PCD,
∴AQ∥平面PCD.
点评:本题主要考查了线面平行的判定定理的应用,线面垂直的性质和判定定理的应用.考查了学生对立体几何基础定理和性质的记忆和运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三角形ABC中,角A、B、C所对边分别为a,b,c,且
2
sinB=
3cosB

(1)若cosA=
1
3
,求sinC的值;
(2)若b=
7
,sinA=3sinC,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有0,1,2,3,4,5六个数字.
(1)用所给数字能够组成多少个四位数?
(2)用所给数字可以组成多少个没有重复数字的五位数?
(3)用所给数字可以组成多少个没有重复数字且比3142大的数?(最后结果均用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)在等比数列{an}中,a1>0,n∈N*,且a5-a4=8,又a2、a8的等比中项为16.
(1)求数列{an}的通项公式;
(2)设bn=log4an,数列{bn}的前n项和为Sn,是否存在正整数k,使得
1
S2
+
1
S3
+…+
1
Sn
>k对任意n>1且n∈N*恒成立.若存在,求出正整数k的值或范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+1|+|x-3|.
(1)求不等式f(x)<6的解集;
(2)若关于x的方程f(x)=|a-2|有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=
2x+1
x-1
,x≥0,且x≠1},集合B={x|y=lg[x2-(2a+1)x+a2+a],a∈R}.
(1)求集合A,B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=a-2i,z2=b+i,
.
z1
是z1的共轭复数.若
.
z1
•z2=-4,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,3)在圆x2+y2-2x-4y+m=0外,则实数m的取值范围为
 

查看答案和解析>>

同步练习册答案