精英家教网 > 高中数学 > 题目详情
1.已知m是常数,对任意实数x,不等式|3x+1|+|2-3x|≥m恒成立
(1)求m的最大值;
(2)设a>b>0,求证:a+$\frac{4}{{a}^{2}-2ab+{b}^{2}}$≥b+m.

分析 (1)利用恒成立问题,只要求出|3x+1|+|2-3x|的最小值即可;
(2)对式子变形,利用基本不等式求a+$\frac{4}{{a}^{2}-2ab+{b}^{2}}$最小值即可.

解答 (1)解:对任意实数x,不等式|3x+1|+|2-3x|≥m恒成立,所以|x+$\frac{1}{3}$|+|x-$\frac{2}{3}$|min=1≥$\frac{m}{3}$恒成立,所以m≤3,所以m的最大值为3;
(2)证明:a>b>0,a-b+$\frac{4}{{a}^{2}-2ab+{b}^{2}}$=$\frac{a-b}{2}+\frac{a-b}{2}+\frac{4}{(a-b)^{2}}≥$3$\root{3}{\frac{a-b}{2}•\frac{a-b}{2}•\frac{4}{(a-b)^{2}}}$=3,
所以a-b+$\frac{4}{{a}^{2}-2ab+{b}^{2}}$≥m,即a+$\frac{4}{{a}^{2}-2ab+{b}^{2}}$≥b+m.

点评 本题考查了不等式的恒成立问题以及利用基本不等式证明不等式,考查了学生分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的两个焦点分别为F1(0,-2$\sqrt{2}$),F2(0,2$\sqrt{2}$),离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆C的方程.
(2)一条斜率为-9的直线l与椭圆C交于不同的两点M,N,求线段MN的中点横坐标x0的取值范围.
(3)若椭圆C上存在不同两点关于直线y=$\frac{1}{9}$x+m对称,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆锥的母线长为10cm,底面半径为5cm,则它的高为5$\sqrt{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P(2,4)在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线上,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形BB1C1C所在平面与底面ANB1B垂直,在直角梯形ANB1B中,AB⊥AN,CB=BA=AN=4,BB1=8,AN∥BB1
(Ⅰ)求直线AB和C1N所成的角的余弦值;
(Ⅱ)求证:BN⊥平面C1B1N;
(Ⅲ)求BB1与平面C1BN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$ax2+lnx-(a+1)x+$\frac{1}{2}$a(a为常数).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)的最小值为-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx+2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)先将函数y=f(x)的图象上的点纵坐标不变,恒坐标缩小到原来的$\frac{1}{2}$,再将所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求方程g(x)=t在区间[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={x|-1≤x≤5},B={x|x<0},则集合A∪B={x|x≤5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ln(3-2x)+$\sqrt{x+2}$的定义域为$[{-2,\frac{3}{2}})$.

查看答案和解析>>

同步练习册答案