精英家教网 > 高中数学 > 题目详情
7.将下列各式化成Asin(ωx+φ)和Acos(ωx-θ)的形式,其中A>0,ω>0,|φ|<$\frac{π}{2}$,|θ|<$\frac{π}{2}$.
sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)          sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)     
$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$)      $\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$) 
sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$)        sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$).

分析 由条件利用两角和(差)的正弦公式及特殊角的三角函数值即可化简所给的式子可得结果.

解答 解:(1)sinx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x+$\frac{π}{4}$);
(2)sinx-cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x-$\frac{π}{4}$);
(3)$\sqrt{3}$sinx+cosx=2($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=2sin(x+$\frac{π}{6}$);
(4)$\sqrt{3}$sinx-cosx=2($\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx)=2sin(x-$\frac{π}{6}$);
(5)sinx+$\sqrt{3}$cosx=2($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)=2sin(x+$\frac{π}{3}$);
(6)sinx-$\sqrt{3}$cosx=2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)=2sin(x-$\frac{π}{3}$);
故答案为:$\sqrt{2}$sin(x+$\frac{π}{4}$),$\sqrt{2}$sin(x-$\frac{π}{4}$),2sin(x+$\frac{π}{6}$),2sin(x-$\frac{π}{6}$),2sin(x+$\frac{π}{3}$),2sin(x-$\frac{π}{3}$).

点评 本题主要考查两角和的差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.把边长为2的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD.则异面直线AD,BC所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,三个半径均为r的小球放在一个半球形的碗中,若三个小球的最高点恰好与碗的上沿处于同一水平面.已知这个碗的半径R=3+$\sqrt{21}$,则r=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知一圆的方程为f(x,y)=0,另一圆与之同心,且过点(x0,y0),求该圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知某运动着的物体的运动方程为s(t)=$\frac{t-1}{{t}^{2}}$+2t2(位移单位:m,时间单位:s),求t=3s时物体的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面的一组基底,如果$\overrightarrow{AB}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=4$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=8$\overrightarrow{{e}_{1}}$-9$\overrightarrow{{e}_{2}}$.求证:A,B,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的最大值、最小值,并分别画出它们的图象.
(1)f(x)=cosx+sinx;
(2)f(x)=cosx-sinx;
(3)f(x)=5cosx+12sinx;
(4)f(x)=4cos5x+5sin5x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一海轮以20n mi1e/h的速度向正东方向航行,它在A点测得灯塔P在海轮的北偏东60°,2h后海轮到达B点时测得灯塔P在海轮的北偏东45°,则B点到灯塔P的距离为20($\sqrt{6}$+$\sqrt{2}$)n mi1e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在△ABC中,$\overrightarrow{BD}=2\overrightarrow{DC}$,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$D.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$

查看答案和解析>>

同步练习册答案