| A. | (4,+∞) | B. | (-∞,0)∪(4,+∞) | C. | (0,4) | D. | (-∞,0) |
分析 若函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的图象上恰好有两对关于原点对称的点,则当x>0时,x2-2ax+2a=-(-x)2即x2-ax+a有两个解,解得实数a的取值范围.
解答 解:若函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的图象上恰好有两对关于原点对称的点,
则当x>0时,x2-2ax+2a=-(-x)2即x2-ax+a有两个解,
所以$\left\{\begin{array}{l}△={a}^{2}-4a>0\\ \frac{a}{2}>0\\ a>0\end{array}\right.$,
解得a∈(4,+∞).
故选:A.
点评 本题考查的知识点是分段函数的应用,二次函数的图象和性质,转化思想,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com