精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当x∈(1,+∞)时,xf(x)+xe1-x>1恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).

分析 (I)利用导数的运算法则得出f′(x),通过对a分类讨论,利用一元二次方程与一元二次不等式的关系即可判断出其单调性;
(Ⅱ)令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,可得g(1)=0,从而g′(1)≥0,解得得a≥$\frac{1}{2}$,当a≥$\frac{1}{2}$时,可得F′(x)在a≥$\frac{1}{2}$时恒大于0,即F(x)在x∈(1,+∞)单调递增.由F(x)>F(1)=2a-1≥0,可得g(x)也在x∈(1,+∞)单调递增,进而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,综合可得a所有可能取值.

解答 解:(Ⅰ)由题意,f′(x)=2ax-$\frac{1}{x}$=$\frac{2{ax}^{2}-1}{x}$,x>0,
①当a≤0时,2ax2-1≤0,f′(x)≤0,f(x)在(0,+∞)上单调递减.
②当a>0时,f′(x)=$\frac{2a(x+\frac{1}{2a})(x-\frac{1}{2a})}{x}$,当x∈(0,$\frac{1}{2a}$)时,f′(x)<0,
当x∈($\frac{1}{2a}$,+∞)时,f′(x)>0,
故f(x)在(0,$\frac{1}{2a}$)上单调递减,在($\frac{1}{2a}$,+∞)上单调递增.
(Ⅱ)原不等式等价于f(x)-$\frac{1}{x}$+e1-x>0在x∈(1.+∞)上恒成立,
一方面,令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,
只需g(x)在x∈(1.+∞)上恒大于0即可,
又∵g(1)=0,故g′(x)在x=1处必大于等于0.
令F(x)=g′(x)=2ax-$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-e1-x,g′(1)≥0,可得a≥$\frac{1}{2}$,
另一方面,当a≥$\frac{1}{2}$时,F′(x)=2a+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x≥1+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x=$\frac{{x}^{3}+x-2}{{x}^{3}}$+e1-x
∵x∈(1,+∞),故x3+x-2>0,又e1-x>0,故F′(x)在a≥$\frac{1}{2}$时恒大于0.
∴当a≥$\frac{1}{2}$时,F(x)在x∈(1,+∞)单调递增.
∴F(x)>F(1)=2a-1≥0,故g(x)也在x∈(1,+∞)单调递增.
∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.
综上,a≥$\frac{1}{2}$.

点评 本题主要考查了利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,考查了计算能力和转化思想,熟练掌握利用导数研究函数的单调性、极值、分类讨论的思想方法等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图为某几何体的三视图,则该几何体的表面积为6+$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,a=2bsinA,则cosA+sinC的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若圆x2+y2=r2(r>0)上恰有两个点到直线2x+2y+$\sqrt{2}$=0的距离等于1,则r的取值范围是(  )
A.r>$\frac{1}{2}$B.$\frac{1}{2}$<r<$\frac{3}{2}$C.r<$\frac{3}{2}$D.r≥$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$=(2,3),($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为(  )
A.0.68B.0.72C.0.7D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=log4$\sqrt{5}$,b=log52,c=log45,则(  )
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足约束条件$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的3倍,则a的值是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的图象上恰好有两对关于原点对称的点,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,0)∪(4,+∞)C.(0,4)D.(-∞,0)

查看答案和解析>>

同步练习册答案