精英家教网 > 高中数学 > 题目详情
16.设实数x,y满足条件$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y-4≤0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为12,则$\frac{3}{a}+\frac{4}{b}$的最小值为$\frac{49}{6}$.

分析 作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求$\frac{3}{a}+\frac{4}{b}$的最小值.

解答 解:由z=ax+by(a>0,b>0)得y=$-\frac{a}{b}x+\frac{z}{b}$,
作出可行域如图:
∵a>0,b>0,
∴直线y=$-\frac{a}{b}x+\frac{z}{b}$的斜率为负,且截距最大时,z也最大.
平移直线y=$-\frac{a}{b}x+\frac{z}{b}$,由图象可知当y=$-\frac{a}{b}x+\frac{z}{b}$经过点A时,
直线的截距最大,此时z也最大.
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=8}\end{array}\right.$,即A(6,8).
此时z=6a+8b=12,
即$\frac{a}{2}$+$\frac{2b}{3}$=1,
则$\frac{3}{a}+\frac{4}{b}$=($\frac{3}{a}+\frac{4}{b}$)($\frac{a}{2}$+$\frac{2b}{3}$)
=$\frac{3}{2}$+$\frac{8}{3}$+$\frac{2b}{a}$+$\frac{2a}{b}$≥$\frac{25}{6}$+2$\sqrt{\frac{2b}{a}•\frac{2a}{b}}$=$\frac{25}{6}$+4=$\frac{49}{6}$,
当且仅当$\frac{2b}{a}$=$\frac{2a}{b}$时取=号,
故答案为:$\frac{49}{6}$

点评 本题主要考查线性规划的应用以及基本不等式的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a=log4$\sqrt{5}$,b=log52,c=log45,则(  )
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={y|y=x2-2x,x∈R},B={x|y=$\sqrt{1-2x}$},则A∩B=(  )
A.[-1,$\frac{1}{2}$]B.(-1,$\frac{1}{2}$]C.[1,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的图象上恰好有两对关于原点对称的点,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,0)∪(4,+∞)C.(0,4)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y满足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,z=2x-y
(1)画出以上二元一次不等式组表示的平面区域;
(2)求z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某天将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的(  )
A.概率为$\frac{3}{5}$B.频率为$\frac{3}{5}$C.频率为6D.概率接近0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{2x-5}{{{x^2}+1}}$的图象在(0,f(0))处的切线斜率为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数是偶函数,并且在(0,+∞)上为增函数的为(  )
A.$y={x^{\frac{2}{3}}}$B.$y={({\frac{3}{2}})^x}$C.$y={log_{\frac{3}{2}}}x$D.y=-2x2+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某人要利用无人机测量河流的宽度,如图,从无人机A处测得正前方河流的两岸B,C的俯角分别为75°,30°,此时无人机的高是60米,则河流的宽度BC等于(  )
A.$240\sqrt{3}$米B.$180(\sqrt{2}-1)$米C.$120(\sqrt{3}-1)$米D.$30(\sqrt{3}+1)$米

查看答案和解析>>

同步练习册答案