精英家教网 > 高中数学 > 题目详情
计算:
(1)(2
7
9
)0.5+0.1-1+(2
10
27
)-
2
3
-3π0+9-0.5+490.5×2-4

(2)lg125+lg8+lg5lg20+lg22.
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算
专题:计算题
分析:(1)先把根式化为分数指数幂,再按幂的运算法则进行计算;
(2)按照对数的运算法则进行计算.
解答: 解:(1)原式=(
25
9
)
1
2
+
1
0.1
+(
27
64
)
2
3
-3×1+(
1
9
)
1
2
+49
1
2
×(
1
2
)
4

=(
5
3
)
1
2
+10+(
3
4
)
2
3
-3+(
1
3
)
1
2
+7
1
2
×
1
16

=
5
3
+10+
9
16
-3+
1
3
+7×
1
16

=11;
(2)原式=lg(125×8)+(1-lg2)(1+lg2)+lg22
=lg1000+1-lg22+lg22=3+1=4.
点评:本题考查了根式与分数指数幂的运算以及对数的运算问题,解题时应根据幂的运算法则以及对数的运算法则,细心计算,以免算错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

质监部门对一批产品进行质检,已知样品中有合格品7件,次品3件.
(Ⅰ)若对样品进行逐个检测,求连续检测到三件次品的概率;
(Ⅱ)若从样品中一次抽取3件产品进行检测,求检测到次品数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条河两岸平行,水流速度为4km/h,一条小船在静水中的速度为2km/h,船头方向与河岸夹角多大时,它在水中的航程最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-6x+9
+
x2+8x+16

(1)求f(x)≥f(4)的解集;
(2)设函数g(x)=k(x-3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

达州市万源中学实施“阳光体育”素质教育,要求学生在校期间每天上午第二节课下课后迅速到操场参加课间活动.现调查高三某班学生从教室到操场路上所需时间(单位:分钟)并将所得数据绘制成频率直方图(如图),其中,路上所需时间的范围是(0,10],样本数据分组为(0,2),[2,4),[4,6),[6,8),[8,10].
(Ⅰ)求直方图t的值;
(Ⅱ)现有6名学生路上时间小于4分钟,其中2人路上时间小于2分钟.从这6人中任意选出2人,设这2人路上时间小于2分钟人数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级.某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在定义域内可导,若满足对任意x∈A(其中A为定义域的子集),都有f(x)>0,f′(x)>0,则称区间A为f(x)的一个“保号”区间(或称f(x)在区间A内具备“保号”性质).
(1)若函数f(x)在(0,+∞)内具备“保号”性质,当a>0时,讨论函数F(x)=eaxf(x)在(0,+∞)内的单调性;
(2)求函数f(x)=ex-ln(x+1)+2的最大“保号”区间;
(3)当函数f(x)在(0,+∞)内不具备“保号”性质,且f(x)>0,f(x)+f′(x)<0,在(0,1)内讨论xf(x)与
1
x
f(
1
x
)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程
x2
a2-2
+
y2
a-1
=1表示焦点在x轴上的双曲线,q:方程y2=(a2一a)x表示开口向右的抛物线.若“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a3+a4+a5+a6+a7=500,则a2+a8=
 

查看答案和解析>>

同步练习册答案