精英家教网 > 高中数学 > 题目详情
18.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若a,$\sqrt{3}$+1是方程x2-(b+$\sqrt{3}$-1)x+$\sqrt{3}$b=b的两根,且2cos(A+B)=1.
(Ⅰ)求角C的度数;
(Ⅱ)求边c的长;
(Ⅲ)求△ABC边AB上的高CD的长.

分析 (Ⅰ)由2cos(A+B)=1,利用三角形内角和定理可得cosC=-$\frac{1}{2}$,从而可求得C=120°.
(Ⅱ)由韦达定理可得$\left\{\begin{array}{l}{a+\sqrt{3}+1=b+\sqrt{3}-1}\\{a(\sqrt{3}+1)=(\sqrt{3}-1)b}\end{array}\right.$,解得a,b,利用余弦定理即可求c的值.
(Ⅲ)由正弦定理可得:$\frac{\sqrt{3}-1}{sinA}=\frac{\sqrt{10}}{sin120°}$,解得sinA,从而可求高CD=bsinA的值.

解答 (本题满分为12分)
解:(Ⅰ)∵2cos(A+B)=1,
∴cosC=-$\frac{1}{2}$,可得C=120°…4分
(Ⅱ)∵a,$\sqrt{3}$+1是方程x2-(b+$\sqrt{3}$-1)x+$\sqrt{3}$b=b的两根,
∴$\left\{\begin{array}{l}{a+\sqrt{3}+1=b+\sqrt{3}-1}\\{a(\sqrt{3}+1)=(\sqrt{3}-1)b}\end{array}\right.$,解得:a=$\sqrt{3}-1$,b=$\sqrt{3}+1$,
∴由余弦定理可得:c2=a2+b2-2abcosC=10,
∴解得:c=$\sqrt{10}$…8分
(Ⅲ)由正弦定理可得:$\frac{\sqrt{3}-1}{sinA}=\frac{\sqrt{10}}{sin120°}$,解得:sinA=$\frac{\sqrt{30}(\sqrt{3}-1)}{20}$,
∴高CD=bsinA=($\sqrt{3}+1$)$\frac{\sqrt{30}(\sqrt{3}-1)}{20}$=$\frac{\sqrt{30}}{10}$…12分

点评 本题主要考查了正弦定理,余弦定理,韦达定理的应用,考查了计算能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为$\sqrt{3}$,则此时△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据下面一组等式
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,
S6=16+17+18+19+20+21=111,
S7=22+23+24+25+26+27+28=175,

可得S1+S3+S5+…+S2n-1=(  )
A.2n2B.n3C.2n3D.n4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等差数列{an}中,a2+a8=10,则a3+a7=(  )
A.11B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛掷质地均匀的甲、乙两颗骰子,设出现的点数分别为a、b,则满足$\frac{a}{2}$<|b-a2|<6-a的概率为(  )
A.$\frac{13}{36}$B.$\frac{5}{18}$C.$\frac{7}{36}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有一对年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“15”和“亳州”的字块,如果婴儿能够排成“2015亳州”或者“亳州2015”,则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知两点A(-3,0)及B(3,0),动点Q到点A的距离为10,线段BQ的垂直平分线交AQ于点P.
(Ⅰ)求|PA|+|PB|的值;      
(Ⅱ)求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是(  )
A.(-∞,-3)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某单位有工程师20人,技术员100人,工人280人,要从这些人中用分层抽样法抽取一个容量为20的样本,其中技术员应该抽取5人.

查看答案和解析>>

同步练习册答案