精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,若使得不等式f(x)≥g(x)对一切正实数x恒成立的实数k存在且唯一,则实数a的值为2.

分析 根据题意:g(x)=lnx(x≥1),图象过(1,0),所以二次函数图象过(1,0),即k=1,可得函数f(x)=x2-x,当0<x<1时,要使f(x)对一切正实数x恒成立,即x2-x≥-x3+(a+1)x2-ax.利用二次函数的性质求解即可.

解答 解:由题意:函数f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,
当g(x)=lnx(x≥1),图象过(1,0),使得不等式f(x)≥g(x)对一切正实数x恒成立的实数k存在且唯一,即kx2-kx-lnx≥0,令m(x)=kx2-kx-lnx≥0
则m′(x)=2kx-k-$\frac{1}{x}$≥0.
实数k存在且唯一,当x=1时,解得k=1.
即k=1.可得函数f(x)=x2-x.
当0<x<1时,要使f(x)≥g(x)对一切正实数x恒成立,即x2-x≥-x3+(a+1)x2-ax.
令h(x)=x2-ax+a-1≥0,
∵对一切正实数x恒成立且唯一,
∴△=a2-4(a-1)=0,
解得:a=2.
故答案为:2.

点评 本题考查了分段函数的值域来求解恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号12345
x169178166175180
y7580777081
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素x、y满足:x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若tanβ=2tanα,且cosαsinβ=$\frac{2}{3}$,则sin(α-β)的值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数y=sin(?x+$\frac{π}{3}$)(0<x<π),当且仅当x=$\frac{π}{6}$时,y取得最大值,则正数?的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{1}{3}$x3+x2-ax+3a在区间[1,2]上单调递增,则实数a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|0<x<2},且A∩B=B,则集合B可能是(  )
A.{0,2}B.{0,1}C.{0,1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.F(x)=(x3-2x)f(x)(x≠0)是奇函数,且f(x)不恒等于零,则f(x)为(  )
A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3},B={x|x<a),若A⊆B,则实数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

同步练习册答案