分析 由题意利用同角三角函数的基本关系求得 2sinαcosβ=cosαsinβ,再根据cosαsinβ=$\frac{2}{3}$,求得 sinαcosβ的值,利用两角差的正弦公式求得sin(α-β)的值.
解答 解:∵tanβ=2tanα,即$\frac{sinβ}{cosβ}$=2$\frac{sinα}{cosα}$,
∴2sinαcosβ=cosαsinβ.
∵cosαsinβ=$\frac{2}{3}$,∴sinαcosβ=$\frac{1}{3}$,则sin(α-β)=sinαcosβ-cosαsinβ=$\frac{1}{3}$-$\frac{2}{3}$=-$\frac{1}{3}$,
故答案为:$-\frac{1}{3}$.
点评 本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 导函数为$f'(x)=-3sin(2x-\frac{π}{3})$ | |
| B. | 函数f(x)的图象关于直线$x=\frac{2π}{3}$对称 | |
| C. | 函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)上是增函数 | |
| D. | 函数f(x)的图象可由函数y=3co s2x的图象向右平移$\frac{π}{3}$个单位长度得到 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com