精英家教网 > 高中数学 > 题目详情
16.F(x)=(x3-2x)f(x)(x≠0)是奇函数,且f(x)不恒等于零,则f(x)为(  )
A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数

分析 由F(x)为奇函数,可得F(-x)=-F(x),进而得到f(-x)=f(x),即可判断f(x)的奇偶性.

解答 解:F(x)=(x3-2x)f(x)(x≠0)是奇函数,且f(x)不恒等于零,
可得F(-x)=(-x3+2x)f(-x)=-F(x)
=-(x3-2x)f(x),
可得f(-x)=f(x),
即有f(x)为偶函数.
故选:B.

点评 本题考查函数的奇偶性的判断,注意运用定义法,考查化简运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2asin?xcos?x+2$\sqrt{3}$cos2?x-$\sqrt{3}$(a>0,?>0)的最大值为2,且最小正周期为π.
(1)求函数f(x)的解析式及期对称轴方程;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,若使得不等式f(x)≥g(x)对一切正实数x恒成立的实数k存在且唯一,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\sqrt{x}$-lnx的导函数为f'(x),则f'(x)最大值为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式$\frac{{x}^{2}+x-6}{x+1}$>0的解集为(  )
A.{x|-2<x<-1,或x>3}B.{x|-3<x<-1,或x>2}C.{x|x<-3,或-1<x<2}D.{x|x<-3,或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义函数y=f(x),x∈D,若存在常数C,对于任意的x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=C,则称函数f(x)在D上的“均值”为C,已知f(x)=log2x,x∈[2,8],则函数f(x)在[2,8]上的“均值”为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某消费品专卖店的经营资料显示如下:
①这种消费品的进价为每件14元;
②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=$\left\{\begin{array}{l}{k_1}P+{b_1},14≤P≤20\\{k_2}P+{b_2},20<P≤26\end{array}$,点(14,22),(20,10),(26,1)在函数的图象上;
③每月需各种开支4400元.
(1)求月销量Q(百件)与销售价格P(元)的函数关系;
(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式-2x2+x<-3的解集是(  )
A.$({-1,\frac{3}{2}})$B.$({-∞,-1})∪({\frac{3}{2},+∞})$C.$({1,\frac{3}{2}})$D.$({-∞,1})∪({\frac{3}{2},+∞})$

查看答案和解析>>

同步练习册答案