5£®Ä³Ïû·ÑƷרÂôµêµÄ¾­Óª×ÊÁÏÏÔʾÈçÏ£º
¢ÙÕâÖÖÏû·ÑÆ·µÄ½ø¼ÛΪÿ¼þ14Ôª£»
¢Ú¸ÃµêÔÂÏúÊÛÁ¿Q£¨°Ù¼þ£©ÓëÏúÊÛ¼Û¸ñP£¨Ôª£©Âú×ãµÄº¯Êý¹ØÏµÊ½ÎªQ=$\left\{\begin{array}{l}{k_1}P+{b_1}£¬14¡ÜP¡Ü20\\{k_2}P+{b_2}£¬20£¼P¡Ü26\end{array}$£¬µã£¨14£¬22£©£¬£¨20£¬10£©£¬£¨26£¬1£©ÔÚº¯ÊýµÄͼÏóÉÏ£»
¢ÛÿÔÂÐè¸÷ÖÖ¿ªÖ§4400Ôª£®
£¨1£©ÇóÔÂÏúÁ¿Q£¨°Ù¼þ£©ÓëÏúÊÛ¼Û¸ñP£¨Ôª£©µÄº¯Êý¹ØÏµ£»
£¨2£©µ±ÉÌÆ·µÄ¼Û¸ñΪÿ¼þ¶àÉÙԪʱ£¬ÔÂÀûÈó×î´ó£¿²¢Çó³ö×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓôø´ý¶¨ÏµÊý·¨¼´¿ÉÇó³öº¯ÊýµÄ½âÎöʽ£¬ÔÙ¸ù¾ÝÏúÊÛÁ¿Q£¨°Ù¼þ£©ÓëÏúÊÛ¼Û¸ñP£¨Ôª£©Âú×ãµÄº¯Êý¹ØÏµÊ½£¬¼´¿ÉÔÂÏúÁ¿Q£¨°Ù¼þ£©ÓëÏúÊÛ¼Û¸ñP£¨Ôª£©µÄº¯Êý¹ØÏµ£¬
£¨2£©Éè¸ÃµêÔÂÀûÈóΪLÔª£¬ÔòÓÉÌâÉèµÃL=Q£¨P-14£©¡Á100-100£¬µÃµ½º¯ÊýµÄ½âÎöʽ£¬·Ö¶ÎÇó³öº¯ÊýµÄ×îÖµ£¬±È½Ï¼´¿É£®

½â´ð ½â£º£¨1£©¡ßµã£¨14£¬22£©£¬£¨20£¬10£©£¬£¨26£¬1£©ÔÚº¯ÊýµÄͼÏóÉÏ£¬
¡à$\left\{\begin{array}{l}{14{k}_{1}+{b}_{1}=22}\\{20{k}_{1}+{b}_{1}=10}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{k}_{1}=-2}\\{{b}_{1}=50}\end{array}\right.$£®
ͬÀí¿ÉµÃ$\left\{\begin{array}{l}{{k}_{2}=-\frac{3}{2}}\\{{b}_{2}=40}\end{array}\right.$£¬
¡àQ=$\left\{\begin{array}{l}{-2P+50£¬14¡ÜP¡Ü20}\\{-\frac{3}{2}P+40£¬20£¼P¡Ü26}\end{array}\right.$£¬
£¨2£©Éè¸ÃµêÔÂÀûÈóΪLÔª£¬ÔòÓÉÌâÉèµÃL=Q£¨P-14£©¡Á100-100£¬
ÓÉ£¨1£©µÃL=$\left\{\begin{array}{l}{£¨-2p+50£©£¨P-14£©¡Á100-4400£¬14¡ÜP¡Ü20}\\{£¨-\frac{3}{2}P+40£©£¨P-14£©¡Á100-4400£¬20£¼P¡Ü26}\end{array}\right.$£¬
=$\left\{\begin{array}{l}{-200{P}^{2}+7800P-74400£¬14¡ÜP¡Ü20}\\{-150{P}^{2}+6100P-10000£¬20£¼P¡Ü26}\end{array}\right.$£¬
µ±14¡Üp¡Ü20ʱ£¬Lmax=1650Ôª£¬´ËʱP=$\frac{39}{2}$Ôª£¬
µ±20£¼p¡Ü26ʱ£¬Lmax=$\frac{4850}{3}$Ôª£¬´ËʱP=$\frac{61}{3}$Ôª£¬
¹Êµ±P=$\frac{39}{2}$ʱ£¬ÔÂÀûÈó×î´ó£¬Îª1650Ôª£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓ뺯ÊýµÄÓ¦ÓÃÎÊÌ⣬¸ù¾ÝÌõ¼þ½¨Á¢º¯Êý¹ØÏµ£¬ÀûÓöþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊÊǼ´¿ÉµÃµ½½áÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®É躯Êýy=sin£¨?x+$\frac{¦Ð}{3}$£©£¨0£¼x£¼¦Ð£©£¬µ±ÇÒ½öµ±x=$\frac{¦Ð}{6}$ʱ£¬yÈ¡µÃ×î´óÖµ£¬ÔòÕýÊý?µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®F£¨x£©=£¨x3-2x£©f£¨x£©£¨x¡Ù0£©ÊÇÆæº¯Êý£¬ÇÒf£¨x£©²»ºãµÈÓÚÁ㣬Ôòf£¨x£©Îª£¨¡¡¡¡£©
A£®Ææº¯ÊýB£®Å¼º¯ÊýC£®Ææº¯Êý»òżº¯ÊýD£®·ÇÆæ·Çżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}x+2£¬x¡Ü-1\\{x^2}£¬-1£¼x£¼1\\ 2x£¬x¡Ý1\end{array}$£¬Èôf£¨x£©=1£¬ÔòxµÄֵΪ£¨¡¡¡¡£©
A£®1£¬-1B£®-1C£®1D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}f£¨{x+2}£©£¬x£¼3\\{2^x}£¬x¡Ý3\end{array}$£¬Ôòf£¨log23£©=12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒbcosA£¬ccosA£®acosB³ÉµÈ²îÊýÁУ®
£¨1£©Çó½ÇA£»
£¨2£©Èô¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£¬a=2£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬B={x|x£¼a£©£¬ÈôA⊆B£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬+¡Þ£©C£®£¨-¡Þ£¬3£©D£®£¨3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÔµÈÑüÖ±½ÇÈý½ÇÐÎABCб±ßABµÄÖÐÏßCDΪÀ⣬½«¡÷ABCÕÛµþ£¬Ê¹Æ½ÃæACD¡ÍÆ½ÃæBCD£¬ÔòACÓëBCµÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®30¡ãB£®60¡ãC£®90¡ãD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚ¡÷ABCÖУ¬ÒÑÖªA£¨3£¬1£©£¬B£¨1£¬0£©£¬C£¨2£¬3£©£¬
£¨1£©Åжϡ÷ABCµÄÐÎ×´£»
£¨2£©ÉèOÎª×ø±êÔ­µã£¬$\overrightarrow{OD}$=m$\overrightarrow{OC}$£¨m¡ÊR£©£¬ÇÒ£¨$\overrightarrow{AB}$-m$\overrightarrow{OC}$£©¡Î$\overrightarrow{BC}$£¬Çó|$\overrightarrow{OD}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸