精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<1\\ 2x,x≥1\end{array}$,若f(x)=1,则x的值为(  )
A.1,-1B.-1C.1D.$\frac{1}{2}$

分析 当x≤-1时,f(x)=x+2=1;当-1<x<1时,f(x)=x2=1;当x≥1时,2x=1.由此能求出x的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<1\\ 2x,x≥1\end{array}$,f(x)=1,
∴当x≤-1时,f(x)=x+2=1,解得x=-1;
当-1<x<1时,f(x)=x2=1,解得x=±1,不成立;
当x≥1时,2x=1,解得x=$\frac{1}{2}$,不成立.
∴x的值为-1.
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1在矩阵A=$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{\frac{1}{2}}\end{array}]$对应的变换作用下所得的曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式$\frac{{x}^{2}+x-6}{x+1}$>0的解集为(  )
A.{x|-2<x<-1,或x>3}B.{x|-3<x<-1,或x>2}C.{x|x<-3,或-1<x<2}D.{x|x<-3,或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义函数y=f(x),x∈D,若存在常数C,对于任意的x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=C,则称函数f(x)在D上的“均值”为C,已知f(x)=log2x,x∈[2,8],则函数f(x)在[2,8]上的“均值”为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x-1||,设函数g(x)=f(x)-m(m为常数)的零点个数为n,则n的所有可能值构成的集合为(  )
A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某消费品专卖店的经营资料显示如下:
①这种消费品的进价为每件14元;
②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=$\left\{\begin{array}{l}{k_1}P+{b_1},14≤P≤20\\{k_2}P+{b_2},20<P≤26\end{array}$,点(14,22),(20,10),(26,1)在函数的图象上;
③每月需各种开支4400元.
(1)求月销量Q(百件)与销售价格P(元)的函数关系;
(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-ax,x∈R
(1)若a=2,求曲线f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数f(x)在[0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0),直线l与抛物线交于两点A、B,若OA⊥OB.
(Ⅰ)求证:直线l过定点;
(Ⅱ)若p=2时,求弦AB的最小值.

查看答案和解析>>

同步练习册答案