精英家教网 > 高中数学 > 题目详情
(2012•陕西三模)已知四个正实数前三个数成等差数列,后三个数成等比数列,第一个与第三个的和为8,第二个与第四个的积为36.
(Ⅰ)求此四数;
(Ⅱ)若前三数为等差数列{an}的前三项,后三数为等比数列{bn}的前三项,令cn=an•bn,求数列{cn}的前n项和Tn
分析:(1)由题意可设此四数为a-d,a,a+d,
(a+d)2
a
,根据已知条件建立方程可求a,d,进而可求
(2)Cn=8n(
3
2
)n-1
,结合数列的特点,考虑利用错位相减可求解该数列的和
解答:解:(1)设此四数为a-d,a,a+d,
(a+d)2
a

由题意知可得
a-d+a+d=8
a•
(a+d)2
a
=36

∴a=4,d=2所求四数为2,4,6,9
(2)由题意可知,数列{an}的首项为2,公差d=2,通项an=2+2(n-1)=2n
数列{bn}的首项为4,公比q=
3
2
,通项bn=4•(
3
2
)
n-1

Cn=8n(
3
2
)n-1

Tn=8[1•(
3
2
)
0
+2•
3
2
+…+n•(
3
2
)
n-1
]

3
2
Tn
=8[1
3
2
+2•(
3
2
)
2
+…+(n-1)•(
3
2
)
n-1
+n•(
3
2
)
n
]
    
-
1
2
Tn
=8[1+
3
2
+…+(
3
2
)
n-1
-n•(
3
2
)
n
]
=8× [
1-(
3
2
)
n
1-
3
2
-n•(
3
2
)
n
]

=16(1-n)•(
3
2
)
n
-16

Tn=32+32(n-1)•(
3
2
)
n
点评:本题主要考查了等差数列与等比数列的性质与通项公式的应用,数列求和中的错位相减求和方法是数列求和的重点,要注意掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知函数f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知x与y之间的几组数据如下表:
X 0 1 2 3
y 1 3 5 7
则y与x的线性回归方程
y
=bx+a
必过(  )

查看答案和解析>>

同步练习册答案