精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+lnx.求函数f(x)在[1,e]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:求f′(x),根据f′(x)在[1,e]上的符号,容易得到函数f(x)在[1,e]上为增函数,这样即可求得f(x)的最大值和最小值了.
解答: 解:f′(x)=2x+
1
x

x∈[1,e]时,f′(x)>0;
∴函数f(x)在[1,e]上为增函数;
∴f(x)的最大值是f(e)=e2+1,f(x)的最小值为1.
点评:考查根据导数符号判断函数单调性的方法,及单调函数在闭区间上的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在二面角α-l-β的一个面α内有一条直线AB,若AB与棱l的夹角为45°,AB与平面β所成的角为30°,则此二面角的大小是(  )
A、30°
B、30°或150°
C、45°
D、45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x2
+lnx,则(  )
A、x=2为f(x)的极大值点
B、x=2为f(x)的极小值点
C、x=
1
2
为f(x)的极大值点
D、x=
1
2
为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,长方体ABCD-A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A-A1BD内的概率为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(1)讨论函数h(x)=
f(x)
x
的单调性;
(2)如果对任意的s,t∈[
1
2
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+b的图象上一点P(1,0),且在点P处的切线与直线3x+y=0平行.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,t](0<t<3)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1,过点A(2,0)作弦PA⊥QA,P、Q均在椭圆上,试问直线PQ是否经过一定点?若过定点,求出该定点坐标;若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值.
(1)求a,b的值;
(2)求函数f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

国家质量技术监督总局对某工厂生产的六年、九年、十二年三种被怀疑有问题的白酒进行甲醇和塑化剂含量检测,测试过程相互独立,其中通过甲醇含量检测的概率分别为
1
3
1
3
1
2
,通过塑化剂含量检测的概率分别为
3
5
1
3
1
3
,两项检测均通过的白酒则认为其达标.
(1)求三种白酒仅有一种达标的概率;
(2)检测后不达标的白酒将停产整改,求停产整改的白酒种数X的分布列及数学期望.

查看答案和解析>>

同步练习册答案