精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间和极值;
(2)当,且时,证明:

(1)的单调递增区间是,单调递减区间是;(2)证明见解析.

解析试题分析:(1)先求出,再根据,求得函数的单调区间和极值;(2)构造函数,利用最值即可证明不等式.
试题解析:(1)函数的定义域为,所以
,得
变化时,的变化情况如下表:











极大值

由表可知:的单调递增区间是,单调递减区间是
所以处取得极大值,
(2)当时,
,则
上单调递减,∴,即
考点:1、利用导数求闭区间上函数的最值;2、利用导数研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;  
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中b≠0.
(1)当b>时,判断函数在定义域上的单调性:
(2)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若存在,使得,求a的取值范围;
(2)若有两个不同的实数解,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围
(2)设函数,当在区间内变化时,
(1)求函数的取值范围;
(2)若函数有零点,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的最大值与最小值;
(2)若时,函数的图像恒在直线上方,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处有极大值
(1)求的解析式;
(2)求的单调区间;

查看答案和解析>>

同步练习册答案