精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.

(1)时,的单调增区间是单调减区间是时,的单调增区间,单调减区间为
(2)①;②.

解析试题分析:(1)先求出导函数,进而由,于是,针对两种情况,分别求出的解即可确定函数的单调区间;(2)①先由条件得到的一个不等关系式,再由有零点,且对函数定义域内一切满足的实数,作出判断的零点在内,设,则可得条件,结合即可确定的取值,进而可写出的解析式;②设,先通过函数的导数确定函数在的单调性,进而求出的零点,进而即可求出的图像在区间上的交点坐标.
(1)          2分
,故
时,由的单调增区间是
单调减区间是
同理时,的单调增区间,单调减区间为    5分
(2)①由(1)及(i)
又由的零点在内,设

所以由条件
此时有      8分
     9分
②又设,先求轴在的交点
,由
单调递增

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数上的单调性;
(2)当时,曲线上总存在相异两点,,使得曲线在处的切线互相平行,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,).
(Ⅰ)当时,求曲线在点处切线的方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)当时,求函数的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若对任意恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象与直线相切,切点横坐标为.
(1)求函数的表达式和直线的方程;(2)求函数的单调区间;
(3)若不等式定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中a是实数.设为该函数图象上的两点,且
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间和极值;
(2)当,且时,证明:

查看答案和解析>>

同步练习册答案