已知函数,,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
(1)单调减函数,(2)(0,4).
解析试题分析:(1)两个函数独立,可分别论证函数在上单调递减,再得函数f(x)为单调减函数.因为,所以当0<m≤2,x≥2时,,从而函数f(x)为单调减函数.(2)结合图形分析,可知讨论点为当 m≤0时,,所以g (x1) =" g" (x2)不成立.当0<m<2时,,,,,所以g (x1) =" g" (x2)恒成立.当2≤m<4时,,,,所以g (x1) =" g" (x2)恒成立.当m≥4时,不成立.
解:(1)f (x)为单调减函数.
证明:由0<m≤2,x≥2,可得
==.
由,
且0<m≤2,x≥2,所以.从而函数f(x)为单调减函数.
(亦可先分别用定义法或导数法论证函数在上单调递减,再得函数f(x)为单调减函数.)
(2)①若m≤0,由x1≥2,,
x2<2,,
所以g (x1) =" g" (x2)不成立.
②若m>0,由x>2时,,
所以g(x)在单调递减.从而,即.
(a)若m≥2,由于x<2时,,
所以g(x)在(-∞,2)上单调递增,从而,即.
要使g (x1) =" g" (x2)成立,只需,即成立即可.
由于函数在的单调递增,且h(4)=0,
所以2≤m<4.
(b)若0<m<2,由于x<2时,
所以g(x)在上单调递增,在上单调递减.
从而,即.
要使g (x1) =" g" (x2)成立,只需成立,即成立即可.
由0<m<2,得.
故当0<m<2时,恒成立.
综上所述,m为区间(0,4)上任意实数.
考点:利用导数研究函数单调性,利用导数求参数取值范围
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当且,时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数有.
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点,是曲线上不同的两点,点为线段的中点,过点作轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象在点处的切线方程为
.
(1)求实数的值;
(2)设.
①若是上的增函数,求实数的最大值;
②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com