已知函数
.
(1)当
时,求函数
的单调增区间;
(2)当
时,求函数
在区间
上的最小值;
(3)记函数
图象为曲线
,设点
,
是曲线
上不同的两点,点
为线段
的中点,过点
作
轴的垂线交曲线
于点
.试问:曲线
在点
处的切线是否平行于直线
?并说明理由.
(1)
,(2)
(3)不平行
解析试题分析:(1)利用导数求函数单调区间,分四步:第一步,求定义域,
,第二步,求导,
,关键在因式分解,目的解不等式. 第三步解不等式由![]()
,得
,第四步,写结论,
的单调增区间为
.(2)求函数最值,其实质还是研究其单调性. 当
时,由
,得
,
,①当
>1,即
时,
在
上是减函数,所以
在
上的最小值为
.②当
,即
时,
在
上是减函数,在
上是增函数,所以
的最小值为
.③当
,即
时,
在
上是增函数,所以
的最小值为
.(3)是否平行,还是从假设平行出发,探究等量关系是否成立. 设
,则点N的横坐标为
,直线AB的斜率
=
,曲线C在点N处的切线斜率![]()
![]()
,由
得
,不妨设
,
,则
,下面研究函数
是否有大于1的解.易由函数单调性得方程无解.
试题解析:(1)![]()
, 2分
因为
,
,所以
,解
,得
,
所以
的单调增区间为
. 4分
(2)当
时,由
,得
,
,
①当
>1,即
时,
在
上是减函数,
所以
在![]()
科目:高中数学 来源: 题型:解答题
已知函数
图象与直线
相切,切点横坐标为
.
(1)求函数
的表达式和直线
的方程;(2)求函数
的单调区间;
(3)若不等式
对
定义域内的任意
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)
的单调性,并证明你的结论;
(2)设函数
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
其中a是实数.设
,
为该函数图象上的两点,且
.
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且
,求
的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某厂生产产品x件的总成本
(万元),已知产品单价P(万元)与产品件数x满足:
,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com