已知函数(,).
(Ⅰ)当时,求曲线在点处切线的方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,恒成立,求的取值范围.
(Ⅰ),(Ⅱ)时,函数的单调增区间为;单调减区间为,.时, 函数的单调增区间为,;单调减区间为.(Ⅲ)
解析试题分析:(Ⅰ))利用导数的几何意义,在处切线的斜率为即为因为,所以当时,.,又,则曲线在处切线的方程为. (Ⅱ)利用导数求函数单调区间,需明确定义域,再导数值的符号确定单调区间. (1)若,当,即时,函数为增函数;当,即和时,函数为减函数. 若,当,即和时,函数为增函数;当,即时,函数为减函数.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. 当时,要使恒成立,即使在时恒成立. 设,易得,从而.
(Ⅰ),.
当时,.
依题意,即在处切线的斜率为.
把代入中,得.
则曲线在处切线的方程为. .4分
(Ⅱ)函数的定义域为.
.
(1)若,
当,即时,函数为增函数;
当,即和时,函数为减函数.
(2)若,
当,即和时,函数为增函数;
当,即时,函数为减函数.
综上所述,时,函数的单调增区间为
科目:高中数学 来源: 题型:解答题
一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当且,时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数有.
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点,是曲线上不同的两点,点为线段的中点,过点作轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com