精英家教网 > 高中数学 > 题目详情

已知函数 
(1)当在点处的切线方程是y=x+ln2时,求a的值.
(2)当的单调递增区间是(1,5)时,求a的取值集合.

(1);(2)

解析试题分析:(1)利用导数的几何意义,先求,利用,解出;
(2)函数的单调递增区间是,所以导函数的解集为,所以先求函数的导数,的解集为的两个实根为,根据根与系数的关系得到.
(1),,代入                 5分
(2),的解集为的两个实根为,根据根与系数的关系得到,a的取值集合为     10分
考点:1.导数的几何意义;2.导数求函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若当时,函数的最大值为,求的值;
(2)设为函数的导函数),若函数上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数定义在上,,导函数
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3+(a-2)x+c的图象如图所示.

(1)求函数y=f(x)的解析式;
(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数上的单调性;
(2)当时,曲线上总存在相异两点,,使得曲线在处的切线互相平行,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,).
(Ⅰ)当时,求曲线在点处切线的方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中a是实数.设为该函数图象上的两点,且
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)讨论函数的极值点;
(2)若对任意的,恒有,求的取值范围.

查看答案和解析>>

同步练习册答案