精英家教网 > 高中数学 > 题目详情

已知函数
(1)讨论函数上的单调性;
(2)当时,曲线上总存在相异两点,,使得曲线在处的切线互相平行,求证:

(1)讨论函数的单调性,我们可先求其导数,则不等式的解集区间就是函数的单调增区间,不等式的解集区间就是函数的单调减区间;(2)题设问题实际上就是已知
,由(1)知化简变形得,要证明的是,利用基本不等式,这样有,故小于的最小值,而上是增函数(可用导数或用增函数的定义证明),于是有,从而,解得

解析试题分析:
(1)函数的定义域为

,解得
,∴, ∴当时,;当时,
上单调递减,在上单调递增.    6分
(2)由题意得,当时,)
     ∴
 整理得
 所以上单调递减,所以上的最大值为        12分
考点:(1)导数与函数的单调性;(2)导数与切线斜率,基本不等式与函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex+2x2—3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上为单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)当在点处的切线方程是y=x+ln2时,求a的值.
(2)当的单调递增区间是(1,5)时,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线的斜率为.
(1)求实数的值及函数的最大值;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;  
(2)设,求上的最大值;
(3)试证明:对任意,不等式都成立(其中是自然对数的底数).

查看答案和解析>>

同步练习册答案