精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

(1)a=4,b=2,c=2,d=2
(2)[1,e2]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)已知区间是不等式的解集的子集,求的取值范围;
(2)已知函数,在函数图像上任取两点,若存在使得恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调增区间;
(2)若,求函数在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数定义在上,,导函数
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数上的单调性;
(2)当时,曲线上总存在相异两点,,使得曲线在处的切线互相平行,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)求证:函数在点处的切线与总有两个不同的公共点;
(2)若函数在区间上有且仅有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)当时,求函数的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若对任意恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(Ⅰ)当时,
(1)若,求函数的单调区间;
(2)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案